平成22年度 「木のまち・木のいえ整備促進事業」 長期に利用できる、また多用途に利用できるための 技術基盤強化と技術の普及

耐震·制振科学証明

鋼製ダボの要素試験,動的摩擦試験

及び動的時の剛性分析に関する報告書

平成 23 年 2 月

財団法人 建材試験センター

鋼製ダボの要素試験,動的摩擦試験 及び動的時の剛性分析に関する報告書

調査期間	平成22年 7月21日 ~ 平成23年 2月28日
試験担当者	財団法人建材試験センター 構造グループ 統括リーダー 高 橋 仁 試験責任者 伊 藤 嘉 則 試験実施者 伊 藤 嘉 則 林 崎 正 伸
試験場所	中央試験所(埼玉県草加市)

[]	E		次〕			
1.	調	査研	F究の目的			1
2.	調	査の)内容			2
3.	錮	製タ	「ボによるログ材間の引張試験			5
ę	3.	1	試験体			6
ę	3.	2	試験方法		1	1
ę	3.	3	試験結果(荷重-変位曲線)		1	2
ę	3.	4	試験結果(最大荷重)		2	1
ę	3.	5	検討結果		2	5
	(1)	平均化曲線			
	(2)	平均化曲線と一次元振動台試験結果との比較			
ę	3.	6	本章まとめ		3	7
4.	錮	製タ	「ボによるログ材間の一面せん断試験		3	8
	1.	1	試験体		3	9
2	1.	2	試験方法		4	5
2	1.	3	試験結果(せん断カー滑り変位曲線)		4	8
	4		 3.1 微小な変位でのせん断力一滑り変位曲線 		4	8
	4		 3.2 摩擦有無の比較 		5	1
	4		3.3 ダボ頭有無の比較		5	6
	4		3.4 ダボ径の比較		6	1
4	1.	4	試験結果(初期剛性)		6	6
4	1.	5	試験結果(せん断力及びダボ軸力曲線)		9	0
4	1.	6	本章まとめ	1	0	1
5.	錮	製タ	*ボの軸力に関する検証	1	0	2
с. Г	5.	1	徐振方法①	1	0	4
F	5.	2	検証方法②	1	0	8
F.	5.	3	検証方法③	1	1	1
Ę.	5.	4	静的面内せん断試験との比較(参考)	1	1	4
Ę	5.	5	本章まとめ	1	1	8

6.	動	的時	*の剛性1 1	L 9
	6.	1	はじめに11	L 9
	6.	2	特定変形角時の特性値13	36
	6.	3	地震波加振時の固有振動数1 5	51
	(1)를	要素壁試験体の一次元振動台試験(JMA 神戸海洋波 50%及び 100%-1 回目)	
	(2)를	要素壁試験体の一次元振動台試験(BCJ波レベルΙ 33%)	
	(3)	実大試験体の三次元振動台試験(BCJ波レベルΙ 33%)	
	6.	4	ログ壁の回転剛性17	72
	6.	5	本章まとめ19	€ 1

7.	動	摩擦	試験		 1	9	2
	7.	1	試験概	要	 1	9	2
	7.	2	試験結	F果	 2	0	1

【添付資料:試験体図】

1. 鋼製ダボ引張及び一面せん断試験	- 2	6	2
2. 三次元振動台試験(実大試験体)	- 2	6	5
3. 三次元振動台試験(実大試験体)	- 2	9	7
4. 一次元振動台試験(窓型タイプ試験体)	- 3	3	2
5. 面内せん断試験	- 3	3	7
6. 一次元振動台試験(掃き出しタイプ試験体)	- 3	4	4
7. 一次元振動台試験(3 階建て試験体)	3	5	5
8. 一次元振動台試験(3 階建て試験体)	3	6	3
9. 一次元振動台試験(動摩擦試験体,構造計算書含む)	- 3	7	1

1. 調査研究の目的

本調査研究は,一般社団法人日本ログハウス協会から依頼されたものである。その目的 は,丸太組構法住宅に対する耐震性能発揮メカニズムの解明に向けた基礎資料の取得であ る。

本報告書では、平成19年度~平成21年度にかけ同協会から建材試験センターに依頼さ れ実施した試験結果並びに平成22年度に新たに依頼されて行った試験結果をもとに分析 したものである。

2. 調査の内容

本調査研究では、丸太組構法住宅における耐震性能発揮メカニズムを解明するため、本 年度において鋼製ダボ単体の要素試験を新たに実施し、同試験結果と過去依頼された試験 結果に対する追加検討を行ったものである。

なお,昨年度は,各試験結果から鋼製ダボ単体のせん断抵抗機構に関する力学的な考察を 加えた丸太組構法住宅における耐震性能発揮メカニズムの分析,並びに,振動応答解析に 対する基礎的データの提示を行っている。本報告書は,その続編となる。

これらの依頼試験においては、いずれもログ材間がラグスクリュータイプの鋼製ダボに より緊結されている。本報告書では、丸太組構法住宅を「ログハウス」、丸太組による校木 を「ログ材」、校木同士の緊結材に用いたラグスクリュータイプのダボを「鋼製ダボ」、丸 太組構法における壁構面を「ログ壁」と称している。

また,本報告書で準用した基準書として,丸太組構法技術基準及び設計・計算例(編集: 国土交通省国土技術政策総合研究所,独立行政法人建築研究所,日本建築行政会議,財団 法人日本建築センター,日本ログハウス協会)がある。以下,同基準を,丸太組技術基準 という。 以下、本報告書の概要を述べる。

第3章では、ログハウスの耐震性能発揮メカニズムの解明の1つとして、要素単体の鋼 製ダボによるログ材間の引張試験を行った。本章では、試験結果を報告するとともに、同 結果を一次元振動台試験結果との対応性について検証している。

第4章では、丸太組構法住宅の耐震性能発揮メカニズムの解明の1つとして、要素単体 の鋼製ダボによるログ材間の一面せん断試験を行った。なお、昨年度の報告においても、 同じ試験を行い、鋼製ダボ単体のせん断抵抗機構に対する力学的分析と鋼製ダボ1本当た りのせん断力-滑り変位関係に関する骨格線モデルの定式化を提案している。本報告にお ける一面せん断試験は、昨年度の追加試験であり、主に鋼製ダボのせん断剛性について検 証している。

第5章では、3章の結果を前提とした上で、一次元振動台試験時の層せん断力とダボ軸力の関係を調べた。

第6章では、4章の結果を前提とした上で、一次元振動台試験時の剛性を層せん断カー層 間変形(層間変位)曲線を用いて検証した。その際には、特定変形角時の挙動に着目してい る。また、本章では、等価剛性並びに等価周期を調べるとともに、これとランダム波加振か ら得られている固有振動数及び地震波加振時における加振中の卓越振動数との比較を試み ている。これら、剛性及び周期などは、今後の復元力特性の把握と振動解析、ログハウスのロ ッキング、丸太組技術基準による設計の妥当性に対する基礎的資料となることを目的とし ている。

第7章では,昨年度調べた要素単体の摩擦試験とその分析結果(静摩擦の検証と提案)に 対する追加試験として動摩擦試験を行った。本章では,その結果のみを示している。 ここで、本調査研究を行うに当たり、各依頼試験の実施及びその後の分析・検討の際に は、大橋好光東京都市大学教授を主査とするワーキンググループを設置し、耐震性能発揮 メカニズムの解明を進めている。なお、ワーキングメンバーは、次の通りである。

- 主 查 大 橋 好 光 東京都市大学工学部建築学科 教授
- 委員原田喜秀株式会社アールシーコア商品開発部 STR
 - 岡田 等 株式会社 TALO インターナショナル
 - 二 連 木 清 有限会社レン構造設計事務所 代表取締役
 - 白石一三 有限会社レン構造設計事務所

3. 鋼製ダボによるログ材間の引張試験

ログハウス耐震性能発揮メカニズムの解明の1つとして,**写真-3.1**に示すように長さ 500mmのログ材を鋼製ダボを用いて2段重ねて構成したログ材間の引き抜き試験(以下, ログ材間の引張試験という)を行った。

写真-3.1 試験実施状況

3.1 試験体

表-3.1.1に試験体一覧を,図-3.1に試験体を示す。

試験体の形状は,長さ 500mm からなる 1 本のログ材を水平に 2 段積み重ねて構成した ものである。この時,重ね長さの中心位置にラグスクリュータイプの鋼製ダボ(材質:SS400) を打ち込みログ材同士を緊結した。本試験で使用したログ材は,すぎ材(E50)である。

試験体は、合計 4 シリーズから構成されており、その変動要因は、①通常の段を想定 したログ材標準接合部及び最下段を想定した土台接合部による2種類、②ダボ径として、 ϕ 13nm 及び ϕ 16nm の2種類である。ここで、ダボ径 ϕ 13nm に対してはログ材断面の幅が 110nm、ダボ径 ϕ 16nm に対してはログ材断面幅が 130nm となっている。また、鋼製ダボの 全長は原則 300nm であるが、 ϕ 13nm のシリーズ2のみ 270nm となっている。その際、ねじ 部の長さはともに 100nm である。また、使用した座金は、いずれも形状が丸形、径が ϕ 38nm、 厚さ 3. 2nm である。

試験体数は、各種類とも原則3体づづとしたが、ログハウスにおいて最も使用頻度が高いものについては、6体行っている。

表-3.1.2及び表-3.1.3に、試験体の密度、含水率及び年輪幅を示す。なお、密度は 試験実施前に、含水率及び年輪幅は試験実施後に測定した。ここで、含水率の測定は、木 材水分計(測定範囲:4.0%~35%)を用いて各部材3箇所ずつ行った値である。年輪幅は、 年輪数10に対する平均年輪幅を示しており、合計4箇所(片面の木口面に対して2箇所ず つ)測定した値を示している。

シリーズ	試験体	上段 ログ材 (A) 断面寸法 [mm]		下段 ログ材(B) 断面寸法 [mm]		鋼製ダボ	試験体数	
	記 方	幅	高さ	幅	高さ		L 14× J	
1	T-13-110-180	110	180	110	180	径 : φ13mm 長さ:300mm 材質:SS400	6	
2	T-13-110-120	110		190	110	120	径 : φ13mm 長さ:270mm 材質:SS400	3
3	T-16-130-180	120		120	180	径 : φ16mm 長さ : 300mm 材質 : SS400	3	
4	4 T-16-130-150			130	150	径 : φ16mm 長さ:300mm 材質:SS400	3	

表-3.1.1 試験体

図-3.1 試験体

(単位 mm)

試験体		- 14	密度	含	水率平均	年輪幅			
		段	$[g/cm^3]$		[%]				
記号	番号			平均	範囲	平均	範囲		
	1	上	0.36	12.9	$11.5 \sim 13.7$	4.3	$4.1 \sim 4.6$		
	1	下	0.43	19.7	17.7 ~ 23.3	5.9	5.3 ~ 6.5		
	0	上	0.39	20.0	17.4 ~ 22.7	6.0	5.7 ~ 6.6		
	2	下	0.38	17.1	16.7 ~ 17.4	5.7	4.7 ~ 6.9		
	0	上	0.41	16.1	15.4 ~ 16.8	6.2	$5.8 \sim 6.6$		
T 12 110 190	ა	下	0.41	16.0	$15.8 \sim 16.2$	5.7	5.3 ~ 6.4		
1-13-110-180	4	上	0.40	17.5	$16.0 \sim 18.9$	5.9	5.3 ~ 6.4		
	4	下	0.42	22.8	20.3 ~ 24.5	4.8	4.5 ~ 5.3		
	F	上	0.43	19.2	18.3 ~ 20.4	5.4	4.8 ~ 5.7		
	5	下	0.47	24.1	20.4 ~ 28.1	4.6	$3.8 \sim 5.0$		
	6	上	0.40	19.5	18.3 ~ 20.7	3.6	$3.2 \sim 3.9$		
	0	下	0.43	15.0	13.3 ~ 16.5	6.9	6.2 ~ 7.4		
	1	上	0.42	18.6	18.0 \sim 19.8	3.8	3.6 ~ 4.2		
	1	下	0.45	15.8	15.4 ~ 16.0	5.5	5.2 ~ 5.7		
$T_{-12-110-120}$	9	上	0.42	14.6	14.3 ~ 15.1	5.7	5.1 ~ 6.6		
1 13 110-120	4	下	0.46	13.0	12.0 \sim 13.7	5.9	5.6 \sim 6.2		
	3	上	0.40	14.5	13.3 ~ 15.2	6.5	$6.1 \sim 6.9$		
	3	下	0.40	12.9	12.2 \sim 13.4	5.8	5.4 ~ 6.4		

表-3.1.2 試験体の密度,含水率及び年輪幅

試験体			宓 庻	含	水率平均	年輪幅				
		段	1山/又	[%]						
記号	番号		[g/cm °]	平均	範囲	ŧ	平均	拿	範囲	
	1	上	0.40	14.4	13.9 ~	15.2	6.2	6.0	\sim	6.5
	1	Ч	0.38	15.3	14.8 ~	16.1	4.0	3.1	\sim	4.7
T-16-120-190	0	뇐	0.47	38.4	31.8 ~	42.0	6.9	6.7	\sim	7.0
1-10-130-180	Δ	Ч	0.48	18.1	17.0 ~	18.8	4.3	4.2	\sim	4.5
	2	上	0.47	15.3	14.5 ~	16.1	4.4	3.8	\sim	4.7
	5	下	0.43	14.0	13.3 \sim	14.5	3.8	3.5	\sim	4.4
	1	上	0.44	16.6	16.3 ~	17.0	5.4	5.2	\sim	5.9
	1	下	0.39	14.3	14.3 ~	14.4	7.1	6.3	\sim	8.1
$T_{-16-120-150}$	0	上	0.44	14.4	14.0 ~	14.8	5.7	4.9	\sim	6.5
1-10-130-150	2	下	0.38	14.3	12.7 \sim	15.2	3.4	3.2	\sim	3.7
	2	上	0.40	16.0	15.6 ~	16.5	5.3	5.2	\sim	5.7
	ა	下	0.39	14.5	14.4 ~	14.7	2.8	2.2	\sim	3.2

表-3.1.3 試験体の密度,含水率及び年輪幅

3.2 試験方法

図-3.2 に示すように、ログ材接合部の上下段それぞれに加力ジグを取付け、加力両端 をピン支持した後、単調載荷の引張荷重を破壊に至るまで連続して与えた。

この時,荷重はロードセル(容量:50kN,読み取り精度:0.025kN)により,また接合部間の開き変位(容量:50mm,読み取り精度:1/200mm)及びダボのボルト頭のログ材へのめり込み変位(容量:25mm,読み取り精度:1/500mm)を測定した。

ここで,以下,接合部間の開き変位を「開き変位(δ1)」,ダボ頭のログ材へのめり込み 変位を「めり込み変位(δ2)」と略して呼ぶ。

図-3.2 試験方法

3.3 試験結果(荷重一変位曲線)

図-3.3.1~図-3.3.4に,荷重-変位曲線を示す。図は,試験体ごとに開き変位及びめり 込み変位の比較で示している。

図-3.3.5~図-3.3.8は,シリーズごとの6体及び3体の比較で,各図の上段が開き変位, 下段がめり込み変位である。

図-3.3.1~図-3.3.4 より、いずれの試験体もはじめ縦軸に沿って荷重が増加し、5kN~ 10kN 近傍で剛性が低下した。その後は緩やかに荷重が増加し最大荷重が得られたが、最大 荷重に達したと同時に急激な荷重低下を示した。その際、開き変位は荷重の低下とともに 変位が進展したが、めり込み変位は概ね一定であった。従って、最大荷重そのものは、ダ ボ頭のログ材へのめり込みによって得られたものと考えられる。

なお,図-3.3.5~図-3.3.8 にもあるように,同じシリーズでも,剛性変化点時の荷重, 最大荷重及び最大荷重時の変位などに,かなりのばらつきが見られた。

図-3.3.1 荷重-変位曲線

図-3.3.2 荷重-変位曲線

試験項目:ログ材間の引張 試験体記号:T-16-130-180 (ダボ:φ16,標準接合部)

図-3.3.3 荷重-変位曲線

図-3.3.4 荷重-変位曲線

試験項目:ログ材間の引張 試験体記号:T-13-110-180(ダボ:φ13,標準接合部)

図-3.3.5 シリーズごとの荷重-変位曲線の比較

試験項目:ログ材間の引張 試験体記号:T-13-110-120(ダボ:φ13,土台接合部)

図-3.3.6 シリーズごとの荷重-変位曲線の比較

P (kN) 荷重 ログ材間の開き変位δ1(mm) 荷重 P(kN) ダボ頭のめり込み変位 δ2(mm) - 1体目 - 2体目 — 3 体目

試験項目:ログ材間の引張 試験体記号:T-16-130-150(ダボ:φ16,土台接合部)

図-3.3.8 シリーズごとの荷重-変位曲線の比較

3.4 試験結果(最大荷重)

表-3.4.1に、最大荷重及び最大荷重時変位の一覧を示す。表中には、シリーズごとの平均値を示した。図-3.4.1は、最大荷重と最大荷重時めり込み変位の関係を全試験体について示したものである。めり込み変位(ダボ頭のめり込み変位)でプロットした理由は、前項3.3より、最大荷重がダボ頭のログ材へのめり込みで得られていることが要因に挙げられたことによる。図中には、シリーズごとの最大荷重平均値も示している。

表-3.4.1 及び図-3.4.1 において, ばらつきはあるもののダボ径が同じ場合, 標準接合部 と土台接合部とで最大荷重に大きな違いが見られない。これは, 前項でも述べたように, 最大荷重がダボ頭のログ材へのめり込みで得られていることが要因に挙げられる。そのた め,最大荷重は,ダボ径が同じであれば標準接合部及び土台接合部を区別せずに同一に取 り扱っても良いと判断される。そこで,ダボ径ごとに 5%下限値耐力(信頼度 95%,有意 水準 0.05)の算出を試みた。表-3.4.2 及び表-3.4.3 は,その結果(基本的統計値)である。 同表の結果より,ログハウスにおける鋼製ダボの引き抜き耐力の下限耐力が与えられ,設計 に対する基礎的資料の取得ができたと考える。

試験体記号	番号	最大荷重 Pmax [kN]	開き変位 δlmax [mm]	めり込み変位 δ2max [mm]	備考
	1	22.3	37.0	44.6	
	2	17.5	10.9	10.3	
	3	26.4	9.9	8.9	
T-12-110-180	4	19.1	25.6	24.8	ダボ:φ13
1 13 110 180	5	19.8	16.1	14.8	標準接合部
	6	25.7	34.8	33.6	
	平均	21.8	22.4	22. 8	
	1	22.7	12.3	11.0	
	2	25.1	18.1	17.4	
T-13-110-120	3	21.2	14.5	13.4	ダボ:φ13 土台接合部
	平均	23. 0	14. 9	13.9	
	1	22.4	14.6	13.8	
	2	26.9	49.0	50.6	
T-16-130-180	3	30.8	46.2	43.7	タホ:φ16 標準接合部
	平均	26. 7	36. 6	36.0	
	1	26.4	25.2	24.1	
	2	24.5	16.4	15.1	
T-16-130-150	3	24.4	26.4	25.1	ダボ:φ16土台接合部
	平均	25. 1	22.6	21.4	

表-3.4.1 最大荷重及び最大荷重時変位一覧

(注) 図中の実線は、シリーズごとの最大荷重平均値である。

図-3.4.1 シリーズごとの最大荷重とめり込み変位の比較

試験体の		最大荷重	開き変位	めり込み変位
ダボ径	番号	Pmax	δ 1	δ2
[mm]		[kN]	[mm]	[mm]
	平均	22.2	19.9	19.9
	標準偏差	3.1	10.2	12.2
φ13	変動係数	0.139	0.513	0.613
	5%下限值	17 1		
	耐力*	17.1	—	_

表-3.4.2 試験結果(基本的統計值)

試験体の		最大荷重	開き変位	めり込み変位	
ダボ径	番号	Pmax	δ 1	δ2	
[mm]		[kN]	[mm]	[mm]	
	平均	25.9	29.6	28.7	
	標準偏差	2.9	14.7	15.1	
φ 16	変動係数	0.112	0.497	0.526	
	5%下限值	01.0			
	耐力*	21.2	_		

表-3.4.3 試験結果(基本的統計値)

(注) * 表-3.4.2及び表-3.4.3

5%下限値耐力は正規分布を仮定した際の確率密度関数上の値で,(平均値-1.64×標準偏差)より求まる。以下,本報告で同様とする。

3.5 検討結果

(1) 平均化曲線

前項の結果を受け荷重一変位曲線の比較を試みる。その検証に当たり本項では、同一ダ ボ径ごとに得られた9体又は6体の荷重一変位関係の平均化を試みた。ここで平均化とは、 各試験体の曲線からるs=0.002mmごとの荷重を読み取り、それを同一変位ごとに9体又は 6体で平均したもの(以下,平均化曲線という)である。図-3.5.1及び図-3.5.2に得ら れた平均化曲線をダボ径ごとに示す。ここで、平均化曲線の算定範囲は、最大荷重時の変 位が9体又は6体のうちの最小値までとし、図中にはその算定範囲を併記している。図-3.5.3は、平均化曲線によるダボ径の比較である。

図-3.5.1 ダボ径ごとの平均化曲線

図-3.5.2 ダボ径ごとの平均化曲線

(2) 平均化曲線と一次元振動台試験結果との比較

本項5の(1)節で得られた平均化曲線と要素壁一次元振動台試験との比較を示す。比較 に際しては、一次元振動台試験時に測定したダボ軸力とログ材間の相対上下方向変位曲線 との関係を調べる。ダボの軸力は、鋼製ダボ内に貼付した埋め込み式のひずみゲージ(首 下35mm)を貼付し、その測定値に校正係数を乗じて求めた値である。なお、振動台試験時 の測定変位はログ材間の相対上下方向変位となるので、平均化曲線はログ材間の開き変位 (δ1)に対するものを用いている。

比較に用いた試験体は,①要素壁の形態を窓型開口としダボ量を変えた3体*1(試験体記 号:鋼製ダボ1.0,鋼製ダボ1.5及び鋼製ダボ2.0),②3階建て試験体1体*2(試験体記号: 3F),③要素壁の形態を掃き出し開口とし前記①との比較を兼ねた1体(試験体記号:掃き 出し)及びこれにすだれ壁を有する2体の合計3体*3(試験体記号:L=1000及びL=2000)で ある。

*1 依頼番号 07R026 号, 平成 20 年 10 月発行 (平成 20 年 4 月試験実施)

- *2 依頼番号 09R025 号, 平成 22 年 2 月発行(平成 21 年 12 月試験実施)
- *3 依頼番号 10R002 号, 平成 23 年 2 月発行予定(平成 22 年 10 月試験実施)

図-3.5.4~図-3.5.10に、平均化曲線と一次元振動台試験の比較を示す。これらの図において、平均化曲線は振動台試験時のダボ軸力とログ材間の相対上下方向変位関係を概ね捉えることができている。従って、平均化曲線を定式化すれば地震時の挙動を推定することが可能となる。但し、前項までに示した例えば図-3.4.1の最大荷重(頁 23),図-3.5.1及び図-3.5.2の荷重-変位曲線(頁 26,頁 27)にもあるように、試験体によるばらつきが多い。そうしたばらつきが振動台試験時にも生じており、平均化曲線より荷重が高いもの又は低いものが多様に見受けられた。そのため、設計に対しては、下限値を採用する必要性が少なからず伺える。その一方で、平均化曲線を超す引張力が生じても倒壊には至っておらず、ダボ軸力に関する設計への検討は、より詳細な分析が必要と言える。また、本静的引張試験から得られた平均化曲線には、実際の建物に生じる鉛直軸力の影響が考慮されておらず、押さえ効果などを含めた検証も必要である。

図-3.5.4 平均化曲線と一次元振動台試験の比較

図-3.5.5 平均化曲線と一次元振動台試験の比較

図-3.5.6 平均化曲線と一次元振動台試験の比較

 (注) 1. 変位の符号は、矢印の方向を(+)とした。
2. 層せん断力及び層間変位の符号は、本紙面中の立面図の 左から右向き方向が(+)となっている。

1	階	

図-3.5.7 平均化曲線と一次元振動台試験の比較

図-3.5.8 平均化曲線と一次元振動台試験の比較

図-3.5.9 平均化曲線と一次元振動台試験の比較

図-3.5.10 平均化曲線と一次元振動台試験の比較

3.6 本章まとめ

ログハウス耐震性能発揮メカニズムの解明の1つとして、ログ材を2段積み重ねて構成 したログ材間の引き抜き試験を行った。その結果、以下のことが明らかとなった。 ①最大荷重(引き抜き荷重)は、ダボ頭のログ材へのめり込みによって得られていた。 ②上記①の理由からダボ径が同じ場合、標準接合部と土台接合部とで最大荷重に大き

な違いが見られなかった。

③最大荷重及び最大荷重時の変位を含め、荷重-変位曲線におけるばらつきが大きい。

- ④上記の①~③に対して、本報告ではダボ径ごとに最大荷重(引き抜き荷重)に対する 5%下限値耐力を算出した。
- ⑤試験体ごとに変位 0.002mm ごとの荷重値を読み取り、それを同じダボ径に対して同一変位ごとに平均して求めた「平均化曲線」を示した。同曲線は、概ね動的時の挙動(一次元振動台試験との比較)と概ね一致していた。

4. 鋼製ダボによるログ材間の一面せん断試験

ログハウス耐震性能発揮メカニズムの解明の1つとして,長さ500mmのログ材を2段重ね て構成した鋼製ダボによるログ材間の一面せん断実験を行った。なお,昨年度においても同 様の試験を行っており,その際にはダボ径 φ 13mm を対象に6種類10体を取り上げている*1。 **表-4**.1.1には,参考としてその一覧を示した。本報告一面せん断試験(以下,鋼製ダボの 一面せん断という)は、昨年度の試験体に対する追加試験と位置付けている。

シリーズ	試験体 記号	ログ材 断面 [mm]	せん断 長さ [mm]	高さ [mm]	摩擦有無	鋼製タ	[*] ボ	ひずみ 測定	載荷車	曲力	試験体数 [体]
А	11A				有り		標進	軸			1
	11N			無し	本数:1本					1	
в	12A	幅 110 ×	300	360	有り	径 :φ13mm	趰淮	••••	1105N	0.041	2
D	12N	高さ180		(2段)	無し	長さ:300mm	标中	平田 · 田 ()	(錘 10 枚)	[N/mm ²]	2
C	13A				有り	材質:SS400	ダボ面ね	••••			2
	13N				無し		ア小沢はし	₩Ţ₩Ţ			2

表-4.1.1 試験体(平成21年度試験体*)

(注)1. 表中の載荷軸力欄における()内の錘とは、鋼板(110.5N/枚)の枚数である。

 使用したログ材:すぎ(E70), 鋼製ダボ1本当たりの降伏せん断耐力:6.905kN

* 依頼番号 09R009 号, 平成 22 年 2 月発行(平成 21 年 6 月試験実施)

4.1 試験体

表-4.1.2及び図-4.1.1及び図-4.1.2に, 試験体一覧を示す。試験体は, 長さ 500mm からなる1本のログ材を水平に2段積み重ねて構成したものである。この時, ログ材間の重ね 長さは 300 mmとし, 重ね長さの中心位置に鋼製ダボを打ち込みログ材同士を緊結した。本試 験で使用したログ材は,幅 110mm 又は 130mm, 高さ 180mm で, すぎ材 (E50)を使用している。

変動要因は、①ダボ径(ϕ 13mm 及び ϕ 16mm)、②ダボ頭の有無及び③摩擦の有無である。 なお、試験体は、4シリーズ8種類から構成され、各種類とも3体づつの合計24体となって いる。使用した座金は、いずれも形状が丸形、径が ϕ 38mm、厚さ3.2mm である。

ここで、「ダボ頭無」とは、ラグスクリューボルトの六角頭を切断したもので、ログ材に設け られている先行孔にダボを落とし込んだだけのものである。また「摩擦無」とは、ログ材を2 段積み重ねる際に、ログ材間にテフロンシートを設けたものである。

表-4.1.3 及び表-4.1.4 に,試験体の密度,含水率及び年輪幅を示す。なお,密度は試験 実施前に,含水率及び年輪幅は試験実施後に測定した。ここで,含水率の測定は,木材水分 計(測定範囲:4.0%~35%)を用いて各部材3箇所ずつ行った値である。年輪幅は,年輪数 10 に対する平均年輪幅を示しており,合計4箇所(片面の木口面に対して2箇所ずつ)測定 した値を示している。

シリーズ	試験体 記号	ログ材 断面 [mm]	せん断 長さ [mm]	高さ [mm]	摩擦の 有無	鋼製ダボ		載荷軸力	体数 [体]	
1	11-A				有り	本数:1本	ダボ頭			
1	11-N	幅110			無し	径 :φ13mm	有り			
0	13-A	× 直×190			有り	長さ:300mm	ダボ頭			
2	2 向さ 13-N	- [H] C 100	200	360	360	無し	材質:SS400	無し	1105N	夕 0
0	14-A		300	(2段)	有り	本数:1本	ダボ頭	(錘 10 枚)	谷3	
3	14-N	幅 130			無し	径 :φ16mm	有り			
	15-A	X 古午100			有り	長さ:300mm	ダボ頭			
4	15-N	同さ 180			無し	材質:SS400	無し			

表-4.1.2 試験体一覧

(注)表中の載荷軸力欄における()内の錘とは、鋼板(110.5N/枚)の枚数である。

図-4.1.1 試験体 (シリーズ 1, シリーズ 3)

図-4.1.2 試験体 (シリーズ 2, シリーズ 4)

試驗体			密度	含水率平均			年輪幅			
		段	$[g/cm^3]$		[%]					
記号	畨号		-	半均	範囲		半均	範囲		
	1	上	0.39	14.9	14.0 \sim	15.3	6.1	5.9 ~	6.5	
		下	0.40	16.2	15.8 ~	16.7	5.6	4.7 ∼	6.4	
114	0	上	0.38	18.0	17.2 ~	18.7	3.8	3.5 \sim	4.0	
IIA	2	下	0.40	13.8	13.5 ~	14.2	5.0	4.6 ~	5.4	
	3	上	0.38	15.4	14.8 ~	15.8	5.7	5.1 ~	6.4	
	5	下	0.40	16.0	14.7 ~	17.3	5.3	4.5 ∼	5.8	
	1	上	0.39	11.8	11.3 ~	12.5	5.7	5.3 ~	6.0	
	I	下	0.43	17.6	16.8 ~	19.2	3.5	3.4 \sim	3.5	
1111	0	上	0.39	12.9	12.2 ~	13.5	5.9	5.5 ~	6.2	
1110	2	下	0.39	16.5	14.8 ~	19.0	5.6	5.4 ~	6.1	
	3	上	0.38	15.0	13.8 ~	16.4	6.4	6.2 ~	6.7	
		下	0.36	15.1	14.7 ~	15.7	5.8	5.0 ~	6.4	
	1	上	0.39	13.6	13.1 ~	13.9	5.8	5.4 ~	6.2	
	1	下	0.40	20.0	16.1 ~	23.3	5.0	4.7 ∼	5.3	
134	9	上	0.40	17.9	17.4 ~	18.8	6.4	6.2 ~	6.6	
137	2	下	0.39	16.5	16.0 ~	17.2	5.8	5.1 ~	6.4	
	3	上	0.38	17.4	17.3 ~	17.6	6.3	5.7 ~	6.9	
	5	下	0.36	18.0	17.5 ~	18.4	5.6	5.0 ~	6.3	
	1	上	0.38	13.8	13.3 ~	14.4	5.5	5.4 ~	5.8	
	I	下	0.38	16.4	16.1 ~	16.7	5.7	5.2 \sim	5.8	
191	0	上	0.36	21.4	18.6 ~	23.7	3.5	3.0 ~	3.9	
1310		下	0.44	15.7	15.6 ~	15.9	5.3	4.6 ~	5.7	
	2	上	0.41	14.0	13.5 \sim	14.5	4.6	4.3 ~	5.1	
	3	下	0.44	15.5	14.7 ~	16.4	6.2	5.7 ~	6.8	

表-4.1.3 試験体の密度,含水率及び年輪幅

試驗体			密度	2	了水率平均		年輪幅			
1- V 10/ 1-	r.	段	$\left[g/cm^{3} \right]$		[%]			[mm]		
記号	番号		20, 1	平均	範囲		平均	範囲		
	1	上	0.39	14.3	13.8 ~	15.0	5.8	5.5 ~	6.5	
		下	0.57	20.2	18.5 ~	22.6	3.5	3.4 ~	3.5	
140	0	上	0.58	16.2	14.5 \sim	17.7	5.6	5.1 ~	6.7	
14A	2	下	0.51	22.8	21.7 \sim	23.7	7.0	6.2 \sim	7.8	
	9	뇌	0.51	18.9	18.3 ~	19.9	6.1	5.2 ~	6.9	
	ა	۲	0.51	19.6	18.7 ~	21.0	4.1	3.6 \sim	4.4	
	1	上	0.41	16.3	16.1 ~	16.6	6.0	5.1 ~	6.6	
	1	下	0.49	18.9	18.5 ~	19.8	4.1	3.8 \sim	4.4	
1411	0	上	0.52	16.6	16.0 ~	17.5	5.9	5.5 ~	6.3	
1410	2	Ť	0.46	15.7	15.1 ~	16.2	7.9	7.2 ~	8.2	
	3	上	0.53	14.5	13.2 ~	15.6	5.5	5.1 ~	6.2	
		Ť	0.45	20.8	19.6 ~	21.9	4.9	4.7 ~	5.4	
	1	늬	0.45	24.0	22.9 ~	25.5	6.5	6.1 ~	6.9	
	1	۲	0.47	14.1	13.0 ~	15.5	5.3	4.5 ~	6.2	
15 Δ	9	上	0.46	16.2	15.5 ~	17.0	5.6	5.2 \sim	6.1	
15A	2	下	0.58	15.0	14.7 ~	15.6	3.9	3.7 \sim	4.2	
	2	上	0.51	17.6	16.1 ~	18.6	6.1	5.4 ~	6.4	
	J	下	0.49	15.3	14.6 ~	16.1	5.2	4.2 ~	5.9	
	1	늬	0.53	18.2	17.1 ~	19.3	2.9	2.6 ~	3.4	
	1	Ч	0.45	16.0	14.7 ~	17.5	5.4	4.7 ~	5.8	
151	0	上	0.41	14.9	14.3 ~	15.4	6.5	5.8 ~	7.1	
TON		下	0.37	15.8	14.5 ~	17.4	5.9	5.4 ~	6.4	
	0	上	0.44	16.9	16.6 ~	17.5	6.6	5.7 ~	7.4	
	3	下	0.47	16.0	14.9 ~	17.6	5.8	5.0 ~	6.3	

表ー4.1.4 試験体の密度,含水率及び年輪幅

4.2 試験方法

試験は、写真-4.2.1~写真-4.2.3に示すように一面せん断試験とし、試験体を鋼製反力 床梁上に水平に設置(下段のログ材をボルト留め)し、ログ材端部を反力用冶具に固定支持 した。また、油圧ジャッキの高さは、上段ログ材の高さ中心位置に設置している。加力は、 上段ログ材端部に設置した油圧ジャッキにより、S型方式によりログ材間の接合界面にせん 断力を与えた。その際、図-4.2.1及び表-4.2.1に示すように、初め鋼製ダボの降伏耐力計 算値(Qdy)に達した後一端除荷し、その後破壊に至るまで連続して載荷した。なお、試験体 には、錘1105N(1枚当たり400mm×400mm×9mm、110.5N/枚を10枚)を積載している。

測定は,接合界面の滑り変位(δs)を高感度電気式変位計(容量:10mm,読み取り精度:1/1000 及び容量:100mm,読み取り精度:1/100)及び接合界面の上下開き(容量:25mm,読み取り 精度:1/500)により測定した。荷重(ΣQndr)は,油圧ジャッキに取り付けたロードセル(容 量:10kN,読み取り精度:0.005kN及び容量:50kN,読み取り精度:0.025kN)によって測定 した。なお、写真-4.2.1及び写真-4.2.2にあるロードセル10kN及び電気式変位計10mm は、参考として第1サイクルのみ測定したものである。本報告では、ロードセル50kN及び電 気式変位計100mmにより測定した値を用いる。

また、本試験では、鋼製ダボ内に埋め込み式のひずみゲージ(首下 35mm)を貼付し、軸ひ ずみを測定した。測定しえた値には、校正係数を乗じ軸力換算した。

鋼製ダボの軸力(Nd)

Nd= ε D×校正係数 [kN] ここで, ε D:計測ひずみ[×10⁻⁶] 校正係数:0.025(径:φ13), 0.045(径:φ16)

写真-4.2.1 第1サイクル時の試験状況

写真-4.2.2 第1サイクル時で測定した水平方向変位

写真-4.2.3 第2サイクル時の試験方法

図-4.2.1 加力サイクル

表-4.2.1 加力サイクル

加力	1 C	2 C
971970	Qdy	Qmax
ダボの径	[kN]	[kN]
φ13	6.55	破壊まで
φ 16	9.93	破壊まで

(注)表中 Qdy はダボ降伏せん断耐力計算値を表し、その算出は丸太組技術基準計算例の
第3章「丸太組構法建築物の構造計算」3.3.4「耐力壁におけるだぼのせん断耐力、
剛性」の(1)「ダボのせん断耐力」中の(3.2)式による。

- 4.3 試験結果(せん断カー滑り変位曲線)
- 4.3.1 微小な変位でのせん断カー滑り変位曲線

図-4.3.1 に、代表的な試験体を例に、第1サイクル時の詳細として示したせん断力と滑り変位曲線を示す。

試験項目 :鋼製ダボの一面せん断

武験項日 : 鋼製タホの一面でんめ 試験体記号:11A(φ13頭有・摩擦有), 13A(φ13頭無・摩擦有)

滑り変位 0.4mm までを拡大した図-4.3.1 において,図中に●印でプロットした荷重より 摩擦係数を読み取った。それらの一覧が表-4.3.1 である。

同表より、ダボ頭無しとしたシリーズ2及びシリーズ4においては、ダボ径による明確な 違いが見られず、6体に対する摩擦係数(µa)の平均は0.47(0.36~0.62)であった。同試 験体から得られた摩擦係数は、載荷軸力によって得られる摩擦係数となる。昨年度の一面せ ん断試験においても同様にして求めた摩擦係数は0.56であり、本試験結果はこれよりやや小 さい値となる。また、昨年度は、鋼製ダボの一面せん断試験と並行して鋼製ダボを設けずに 行った摩擦試験を行っており、同試験から摩擦係数0.54が得られた。これらの結果を平均的 に捉えれば、ログ材間に生じる摩擦係数としてµa=0.5程度が見込まれることが明らかとな った。

ー方,ダボ頭有りとした試験体において、ダボ径 ϕ 13mm (シリーズ 1)の摩擦係数 μ a の平均値は 1.5、ダボ径 ϕ 16mm (シリーズ 3)の摩擦係数 μ a の平均値は 1.7 であった。従って、 ダボ径 ϕ 16mm の方が ϕ 13mm よりやや μ a が大きい傾向にあるが、どちらも使用した丸座金は 同じ径 (ϕ 38mm,厚さ 3.2mm)のものが用いられているので、施工時におけるダボの締め付け 力による摩擦力はダボ径によらず同じと考えられる。従って、これら μ a の差異はばらつき の範囲と考え、 ϕ 13mm と ϕ 16mm の平均をとると μ a = 1.6 が得られる。なお、両シリーズか ら得られた μ a は、①載荷軸力による摩擦力及び②鋼製ダボそのもののログ材への締め付け 時に生じる摩擦力の 2 つが組み合わさっているので、ダボ頭無しの試験体から得られた摩擦 係数を差し引くと約 1.1 が得られる。従って、鋼製ダボの締め付けだけでも摩擦係数 1.1 程 度生じていたと判断される。参考までに、昨年度による鋼製ダボー面せん断試験では、ダボ 締め付けによる摩擦係数は 0.5 程度であった。本年度と昨年度の差は、施工時のダボ締め付 け力の違いによるものと考える。従って、当然のことであるが、ダボ締め付け力は人為的誤 差が大きくなるので、設計に際してダボ締め付け力による摩擦力を考慮するには、施工時の トルク管理などが求められることになる。

以上から、ログハウスにおける摩擦力の評価としては、ダボ締め付けによって得られる摩 擦力は実際の建物に対して余力と考え無視して扱っても、昨年度及び本年度の試験結果を総 じて、少なくとも載荷軸力による摩擦力を考慮したμa=0.5が提案される。

シリーズ	試験体 記号	ダボ頭の 有無	摩擦の有無	滑りせん断力 ΣQn [kN]	載荷軸力 Nv [kN]	摩擦係数 μa =ΣQn/Nv
				1.127		1.02
1	11A	有	有	1.568	1. 105	1.42
				2.196		1.99
	13A 無			0.685		0.62
2		嶣		0.487		0.44
				0.397		0.36
		有		1.857		1.68
3	14A			1.535		1.39
				2.180		1.97
		無		0.541		0.49
4	15A			0. 521		0.47
				0.511		0.46

表-4.3.1 摩擦係数

4.3.2 摩擦有無の比較

図-4.3.2-1~図-4.3.2-4 に,各シリーズにおいて摩擦有無の比較で示したせん断力と滑り変位曲線を示す。

図-4.3.2-1 せん断カー滑り変位曲線

(*ϕ*13 頭有:摩擦有無の比較)

図-4.3.2-2 せん断カー滑り変位曲線

(φ13 頭無:摩擦有無の比較)

図-4.3.2-3 せん断カー滑り変位曲線

(φ16 頭有:摩擦有無の比較)

図-4.3.2-4 せん断カー滑り変位曲線

(φ16 頭無:摩擦有無の比較)

4.3.3 ダボ頭有無の比較

図-4.3.3-1~図-4.3.3-4 に,各シリーズにおいてダボ頭有無の比較で示したせん断力と 滑り変位曲線を示す。

図-4.3.3-1 せん断カー滑り変位曲線

(φ13 摩擦有:ダボ頭有無の比較)

図-4.3.3-2 せん断カー滑り変位曲線

(φ13 摩擦無:ダボ頭有無の比較)

図-4.3.3-3 せん断カー滑り変位曲線

(φ16 摩擦有:ダボ頭有無の比較)

図-4.3.3-4 せん断カー滑り変位曲線

(φ16 摩擦無:ダボ頭有無の比較)

4.3.4 ダボ径の比較

図-4.3.4-1~図-4.3.4-4 に,各シリーズにおいてダボ頭有無の比較で示したせん断力と 滑り変位曲線を示す。

試験項目 : 鋼製ダボの一面せん断 試験体記号:11A(φ13頭有・摩擦有)と14A(φ16頭有・摩擦有)

図-4.3.4-1 せん断カー滑り変位曲線

(ダボ頭有,摩擦有:ダボ径の比較)

試験項目 : 鋼製ダボの一面せん断 試験体記号:11N(φ13頭有・摩擦無)と14N(φ16頭有・摩擦無)

図-4.3.4-2 せん断カー滑り変位曲線

(ダボ頭有, 摩擦無:ダボ径の比較)

試験項目 :鋼製ダボの一面せん断

(ダボ頭無, 摩擦有:ダボ径の比較)

図 - 4, 3, 4-3 せん断カー滑り変位曲線

試験項目 :鋼製ダボの一面せん断

図 - 4.3.4-4 せん断カー滑り変位曲線

(ダボ頭無, 摩擦無:ダボ径の比較)

4. 4 試験結果(初期剛性)

表-4.4.1-1 及び表-4.4.1-2 に初期剛性一覧を示す。表中の初期剛性は、下図の模式図に あるように、せん断カー滑り変位曲線中の初期接線勾配を目視判断により読み取った値であ る。表中、初期剛性をもとにオフセット処理された変位とは、第1サイクル時はスリップ変 位を、第2サイクル時は残留変位に相当するものである。また、表には、第1サイクルの初期 剛性を対象に、シリーズごとに3体の平均値、標準偏差、変動係数、5%下限値(信頼度 95%、 有意水準 0.05 で、全3章参照)も示した。

○ 及び ○ : 目視判断した初期接線勾配の点

図-4.4.1-1~図-4.4.1-4(ダボ径 φ 13mm に関する)及び図-4.4.2-1~図-4.4.2-4(ダ ボ径 φ 16mm に関する)に、せん断カー滑り変位曲線中の初期剛性を示す。各図には、初期接 線勾配に対する目視判断した点が〇印でプロットされている。その際、第2サイクルは、第1 サイクル除荷時に生じた残留変位を原点移動して表記した。

図-4.4.3-1 及び図-4.4.3-2 に、初期剛性の比較を示す。図には、シリーズごとに3 体の 平均値、最大値及び最小値を示した。 ここで、ダボ径 φ 13mm に着目し、図-4.4.3-1 における第1サイクル時の初期剛性(Kd1) を見る。同図より、通常の施工時と同じ状況になる試験体 11A(摩擦有及びダボ頭有)の初 期剛性が最も高い傾向にあった。その平均値は 4.8[kN/mm]であり、丸太組技術基準で与えら れる降伏耐力計算値(6.55kN)及び降伏変形角 1/60rad から求まる剛性 2.18[kN/mm]の約 2.2 倍あった。得られた初期剛性は、スリップ変位の影響を除去した理想化状態にしたものの、 実施工に近い状態となる試験体 11A は、現行基準を大きく上回ることが分かった。

一方,ダボ頭を有しても摩擦を無くした試験体 11N の平均値は 2.4[kN/mm]である。その他 の試験体 13A 及び 13N も 2[kN/mm]前後であることから,施工時におけるダボ締め付け力など による摩擦の影響を受けない場合の初期剛性は,概ね丸太組技術基準で与えられる剛性に一 致すると言える。すなわち,丸太組技術基準ではダボ締め付け力及び鋼製ダボとログ材間の 穴のクリアランスなどを考慮した設計法になっていると考えれば,試験体 11N,13A 及び 13N の結果から下限値を与えていることが判断される。しかし,実際の建物では,鉛直軸力によ る摩擦力,ダボ締め付けによる摩擦力などが生じており,試験体 11A の結果も含め実態の状 況に対する下限値を示せれば,現行規準に対する初期剛性の見直しを検証する価値があると 思われる。
試験体		第1サイクル(1C)時		第2サイクル(2C)時	
記号	番号	初期剛性をもとに オフセット処理 された変位 [mm]	初期剛性 Kd1 [kN/mm]	初期剛性をもとに オフセット処理 された変位 [mm]	初期剛性 Kd2 [kN/mm]
11-A	1	1.20	5.00	-0.27	16.07
	2	0.91	4.56	0.00	93.57
	3	0.94	4.94	-0.03	281.50
	平均	—	4.83	—	—
	標準偏差	_	0. 2	_	_
	変動係数	_	0. 041	_	—
	5%下限值	—	4. 51	—	—
11-N	1	1.92	3.42	-0.19	20.00
	2	0.49	1.85	-0.27	6.51
	3	0.45	2.00	-0.34	5.00
	平均	_	2. 42	_	—
	標準偏差	—	0. 9	—	—
	変動係数	_	0. 372	_	—
	5%下限值	_	0. 94	_	_
	1	0.98	2.38	-0.22	8.54
13-A	2	0.19	1.87	-0.30	6.95
	3	2.17	1.77	-0.14	7.22
	平均	_	2. 01	_	—
	標準偏差	_	0. 3	_	—
	変動係数	—	0. 149	—	—
	5%下限值	_	1. 52	_	_
13-N	1	0.17	1.82	-0.17	3.79
	2	1.25	2.10	0.19	4.96
	3	2.87	2.00	0.23	5.84
	平均	_	1.97	_	_
	標準偏差	_	0.1	_	_
	変動係数	_	0. 051	_	_
	5%下限值	—	1. 81	—	—

表-4.4.1-1 初期剛性一覧

(注)表中の5%下限値は、信頼度95%、有意水準0.05による。

なお,3章でも示したように,5%下限値耐力は,正規分布を仮定した際の確率密度関数上の 値で,(平均値-1.64×標準偏差)より求まる。

試験体		第1サイクル(1C)時		第2サイクル(2C)時	
記号	番号	初期剛性をもとに オフセット処理 された変位 [mm]	初期剛性 Kd1 [kN/mm]	初期剛性をもとに オフセット処理 された変位 [mm]	初期剛性 Kd2 [kN/mm]
14-A	1	-0.05	3.33	-0.03	116.00
	2	1.16	5.09	-0.09	22.18
	3	-0.30	3.93	-0.15	19.15
	平均	_	4.12	_	52.44
	標準偏差	_	0.9	_	55.1
	変動係数	_	0.219	—	1.051
	5%下限值	—	2.64	—	-37.92
14-N	1	1.06	3.84	-0.33	6.00
	2	0.12	3.08	-0.19	6.33
	3	0.98	4.24	-0.21	5.71
	平均	_	3. 72	_	6.01
	標準偏差	—	0.6	—	0.3
	変動係数	—	0. 161	—	0.050
	5%下限值	—	2. 73	—	5.52
15-A	1	0.11	2.95	-0.32	6.80
	2	1.57	2.99	-0.11	8.59
	3	2.21	2.72	-0.21	9.21
	平均	_	2.89	_	8.20
	標準偏差	_	0. 2	_	1.2
	変動係数	_	0.069	_	0.146
	5%下限值	_	2. 56	_	6.23
15-N	1	0.62	2.95	0.07	7.01
	2	0.33	1.87	-0.10	4.60
	3	1.11	3.41	-0.04	6.20
	平均	—	2. 74	—	5.94
	標準偏差	_	0.8	_	1.2
	変動係数	_	0. 292	_	0.202
	5%下限值	—	1. 43	—	3.97

表-4.4.1-2 初期剛性一覧

(注)表中の5%下限値は、信頼度95%、有意水準0.05による。

なお,3章でも示したように,5%下限値耐力は,正規分布を仮定した際の確率密度関数上の 値で,(平均値-1.64×標準偏差)より求まる。

図-4.4.1-1 初期剛性(荷重-変形関係の初期時の拡大)

図-4.4.1-2 初期剛性(荷重-変形関係の初期時の拡大)

図-4.4.1-3 初期剛性(荷重-変形関係の初期時の拡大)

図-4.4.1-4 初期剛性(荷重-変形関係の初期時の拡大)

図-4.4.2-1 初期剛性(荷重-変形関係の初期時の拡大)

図-4.4.2-2 初期剛性(荷重-変形関係の初期時の拡大)

図-4.4.2-3 初期剛性(荷重-変形関係の初期時の拡大)

図-4.4.2-4 初期剛性(荷重-変形関係の初期時の拡大)

試験項目 : 鋼製ダボの一面せん断 試験体記号:11A・11N・13A・13N (ダボ径:φ13)

図-4.4.3-1 初期剛性の比較

試験項目 : 鋼製ダボの一面せん断 試験体記号:14A・14N・15A・15N (ダボ径:φ16)

図-4.4.3-2 初期剛性の比較

図-4.4.4-1~図-4.4.4-4 (ダボ径 φ 13mm に関する)及び図-4.4.5-1~図-4.4.5-4 (ダ ボ径 φ 16mm に関する)に、オフセット処理後のせん断力-滑り変位曲線を示す。同図は、前 述により得られた初期剛性をもとに、スリップ変位をオフセット処理して表記したもので、滑 り変位 4mm 時までを示している。

また、ダボ径 φ 13mm に関する図中には、昨年度提案した鋼製ダボ単体のせん断力 – 滑り変 位に関するバイリニア型骨格線モデルも併記した。参考までに、同骨格線の第1勾配は鋼製 ダボのせん断抵抗による抵抗機構を、第2勾配は鋼製ダボのロープ効果による抵抗機構を表 している。

ここで、ダボ径 φ 13mm に関する 図-4.4.4-1 ~ 図-4.4.4-4 に着目する。 図-4.4.4-1 より、 ダボ頭有・摩擦有とした試験体 11A の第 1 サイクル時は、バイリニア型骨格線モデルと概ね 一致していた。これらは 3 体ともに同様な傾向を示しており、昨年度のモデルの妥当性が認 められる。一方、第 2 サイクル時の剛性は、鋼製ダボとログ材中の穴とのクリアランスがな くなったことにより第 1 サイクルより高くなっている。この結果から、次のことが考えられ る。すなわち、第 1 サイクル時の初期剛性は、スリップ変位を除いて求めた理想化した状態 のものであるので、本来なら、第 1 サイクル時と第 2 サイクル時の剛性は同じになるはずで ある。しかし、第 2 サイクル時の方が剛性は高いということは、第 1 サイクル時でスリップ 変位を除いても、鋼製ダボとログ材穴とのクリアランスの影響が完全には除去できていない と判断される。従って、第 1 サイクル時の初期剛性は、安全側に算出されていることが推察 される。

図-4.4.4-2~図-4.4.4-4 においてこれらの試験体はいずれもログ材接合界面に摩擦力 が生じないものであるが、第1サイクル時の剛性はバイリニア型骨格線モデルを下回ってお り、むしろ第2サイクル時で概ね一致していた。また、その後の曲線形状もロープ効果を表 すバイリニア型骨格線モデルの第2勾配とも一致している。従って、鋼製ダボとログ材との 穴のクリアランスによる剛性低下を除けば、昨年度提案した骨格線は、鋼製ダボ単体のせん 断カー滑り変位挙動を現す妥当なモデルであったと言える。

図-4.4.4-1 スリップ変位を除いた初期勾配と骨格線モデルの比較

図-4.4.4-2 スリップ変位を除いた初期勾配と骨格線モデルの比較

図-4.4.4-3 スリップ変位を除いた初期勾配と骨格線モデルの比較

図-4.4.4-4 スリップ変位を除いた初期勾配と骨格線モデルの比較

図-4.4.5-1 スリップ変位を除いた初期勾配と骨格線モデルの比較

試験項目 : 鋼製ダボの一面せん断 試験体記号:14N (φ16頭有・摩擦無)

図-4.4.5-3 スリップ変位を除いた初期勾配と骨格線モデルの比較

図-4.4.5-4 スリップ変位を除いた初期勾配と骨格線モデルの比較

4.5 試験結果(せん断力及びダボ軸力曲線)

・図-4.5.1-1~図-4.5.1-4(ダボ径φ13mmに関する)及び図-4.5.2-1~図-4.5.2-4
(ダボ径φ16mmに関する)に、せん断力とダボ軸力の関係を示す。

各図、せん断力とダボ軸力は、滑り変位との関係で図示している。

ダボ軸力は,鋼製ダボ内に埋め込み式のひずみゲージ(首下 35mm)を貼付して測定した値に,校正係数を測定ひずみに乗じて得られる値である。

ダボ軸力 (Nd)

Nd= ε D×校正係数 [kN]

ここで, εD:計測ひずみ[×10⁻⁶]

校正係数:0.0269

図-4.5.1-1 及び図-4.5.2-1 より,摩擦有り及びダボ頭有りとした試験体 11A 及び 14A のダボ軸力は第1サイクル時(降伏耐力計算値)まで小さく,それ以降に大きくなる傾向が 見られた。一方,その他の図においてダボ頭を無しとした試験体は滑り変位が大きくなって もダボ軸力が殆ど生じていない。これらから,降伏耐力までは鋼製ダボに軸力が生ぜず,滑 り変位の増大に伴って作用するロープ効果によりダボ軸力が大きくなることが確認できた。

なお、昨年度行った一面せん断試験に関する報告の中では、これらの抵抗機構として図ー 4.5.3による力学モデルを示した上での理論的考察を加え、その結果から図ー4.5.4に示す抵 抗要素を示し、図ー4.5.5のようにその組み合わせによるバイリニア型骨格線モデルを定式 化している。図ー4.5.1-1及び図ー4.5.2-1の結果によるダボ軸力発現状況は、図ー4.5.3~ 図ー4.5.5 に示した抵抗機構と一致していることから、昨年度考察した力学的モデルが妥当 であることが確認できた。

図-4.5.1-1 せん断力とダボ軸力の関係

図-4.5.1-2 せん断力とダボ軸力の関係

図-4.5.1-3 せん断力とダボ軸力の関係

図-4.5.1-4 せん断力とダボ軸力の関係

図-4.5.2-1 せん断力とダボ軸力の関係

図-4.5.2-2 せん断力とダボ軸力の関係

図-4.5.2-3 せん断力とダボ軸力の関係

図-4.5.2-4 せん断力とダボ軸力の関係

図-4.5.3 鋼製ダボのせん断抵抗機構(依頼番号 09R009 報告書参照)

①ログ材間の物体接触条件による見掛けの抵抗(Qf)

②長期鉛直軸カによる真の摩擦抵抗 (Qn)

③鋼製ダボのせん断抵抗(Qd)

④ロープ効果によるせん断抵抗 (Qr)

図-4.5.4 せん断抵抗機構に関する各抵抗要素の復元力特性の仮定 (依頼番号 09R009 報告書参照)

4.6 本章まとめ

ログハウス耐震性能発揮メカニズムの解明の1つとして、ログ材を2段積み重ねて構成し たログ材間の一面せん断試験を昨年度の試験に追加して行った。その結果、昨年度及び本年 度の双方の試験結果を総じて、以下のことが言える。

- ① 施工時における鋼製ダボの締め付け力による摩擦力には、ある種当然のことであるが人 為的誤差が大きいことが分かった。なお、本試験結果の範囲では、ダボ径φ13mmとφ16mm とでは、ばらつきを無視すれば大きな違いが見られなかった。これは、用いた丸座金が どちらも同じもの(φ38mm、厚さ3.2mm)が使用されていたことが一因に挙げられる。
- ② 鋼製ダボの締め付け力による摩擦力を無視しても、少なくとも鉛直軸力による摩擦係数 としてμa=0.5程度は見込めることが明らかになった。
- ③ ダボ径 φ 13mm に着目し初期剛性を調べたところ、通常の施工時と同じ状況になる試験体 (摩擦有及びダボ頭有)の初期剛性平均値は 4.8[kN/mm]あり、丸太組技術基準で与えら れる剛性 2.18[kN/mm]の約 2.2 倍あった。一方、施工時にダボ締め付け力などによる摩擦 の影響を受けない試験体の初期剛性は、概ね丸太組技術基準の剛性に一致して。
- ④ 上記③から、丸太組技術基準では、鋼製ダボに頭がなく、かつ、摩擦力を無視した状態での下限値を与えていることが考察された。実際の建物には生じている摩擦力などを含め、実況に応じた下限値を今後示せれば、現行基準に対する初期剛性の見直しを行える可能性を示せた。
- ⑤ スリップ変位を除去して理想化したせん断カー滑り変位曲線(通常の施工状態を想定した試験体)は、昨年度提案した鋼製ダボ単体のバイリニア型骨格線モデルと概ね一致していた。その際、実際の理想化状態より安全側に算出(スリップ変位を除いた曲線から初期剛性を算出しても、ダボとログ材穴とのクリアランスの影響が完全には除去できていない)されていることが判断された。その他の試験体(いずれもログ材接合界面に摩擦力が生じないもの)でも、第2サイクル時の曲線形状はバイリニア型骨格線モデルと一致していた。従って、鋼製ダボとログ材との穴のクリアランスによる剛性低下を除けば、昨年度提案した骨格線は、鋼製ダボ単体のせん断カー滑り変位挙動を現す妥当なモデルであったと言える。
- ⑥ 鋼製ダボに生じる引張力とせん断力の関係を調べたところ、試験時の挙動は、昨年度提案した抵抗機構に対する力学的モデルで説明可能なことが明らかとなった。従って、昨年度提案した力学的モデルの妥当性が改めて確認できた。

5. 鋼製ダボの軸力に関する検証

3 章で示した鋼製ダボによるログ材間の引張試験から荷重-変位曲線を平均化したもの は、一次元振動台試験時のダボ軸カーログ材間の相対上下方向変位曲線の傾向を概ね把握 していた。一方、これまで行ってきたログハウスにおけるログ壁を対象とした幾つかの振 動台試験から、例えば JMA 神戸海洋波 100%加振時にはダボ引き抜き力が 20kN 程度生じる ことが分かってきた。しかし、設計においては、地震力とダボ引き抜き力の関係が明らか にならないと、例えば標準せん断力係数(CO)が 0.2 や 1.0 時の地震力に対する必要ダボ 量の判定ができないことになる。

そこで、本章では、要素壁一次元振動台試験結果*(試験体記号:鋼製ダボ 1.0,鋼製ダ ボ 1.5,鋼製ダボ 2.0)を用いて、層せん断力の作用によりログ壁脚部に生じるモーメント と、ログ壁脚部においてダボ引張力と最下段ログ材の土台へのめり込みによる圧縮力によ って生じる偶力モーメントとの釣り合い関係を検証することで、耐震設計に対する基礎的 資料の取得を試みた。なお、検討対象とする地震波は、JMA 神戸海洋波 50%及び 100%-1 回目加振とする。

* 依頼番号 07R026 号, 平成 20 年 10 月発行(平成 20 年 4 月試験実施)

具体的には,以下に示すが,いずれもログ壁を剛と仮定して脚部のみで回転が生じると 扱っている。

地震力の作用によりログ壁脚部には,層せん断力とログ壁高さとの間に次の関係式によ るモーメントが生じる。

 $Mq=Q_X \times H \quad \cdot \quad \cdot \quad (5.1)$

ここで、Qx:層せん断力、H:ログ壁高さ

一方, ログ壁脚部においては, 引張側におけるダボ軸力と最下段ログ材の土台へのめり込 み圧縮力に対して, 次の偶力モーメントが生じる。

 $Mn = \Sigma Tn \times B = \Sigma C \times B \quad \cdot \quad \cdot \quad (5.2)$

ここで, ΣTn:引張側,最外縁のダボ引張力

ΣC: 圧縮側, ログ材の土台へのめり込み圧縮力

B: ログ壁脚部に生じる引張力及び圧縮力の応力中心間距離

式(1)及び式(2)によるモーメント Mq 及び Mn は、釣り合いを保つので次式が成り立つ。

 $Mq/B = \Sigma Tn \quad \cdot \quad \cdot \quad (5.3)$

式(5.3)より, Mq/B は層せん断力によって生じるログ壁脚部の引張力に相当するので,以下,これをTqと表現する。次頁以降,窓型開口とした鋼製ダボ1.0,鋼製ダボ1.5,鋼製 ダボ2.0による3体の試験体を取り上げTqと∑Tnとの関係を調べる。その際に,式(5.1) におけるHの取り扱い及び式(5.2)又は式(5.3)における∑Tnの取り扱いについて,3つの 検証を試みている。なお,いずれの検証においても,式(5.2)中の応力中心間距離Bは,直 交壁芯心間距離としている。

5.1 検証方法①

本項では,層せん断力(Qx:応答加速度波形に試験体重量を乗じて算出した値)の作用 点を2階床上と仮定し,Qxに高さ2700mm(土台天端~ログ材15段分の高さ)を乗じたモ ーメントから鉛直軸力による負のモーメントを差し引き,これをログ壁の回転半径(応力中 心間距離:B)で除したもの(Tq)と測定値ダボ軸力(Tn)との比較を試みた。

なお、これまで行ってきた検証結果から窓型開口の場合、ログ壁全体が回転し下図模式 図中でいうDO7、DO1、DO4 にダボ引張軸力が作用していたので、最外縁ダボ引張(ΣTn) は、それらの合計値とした。その際、前述したように応力中心間距離(B)は直交壁芯心間 距離としているが、本来なら壁ごとに対するΣTnの引張合力位置とめり込み圧縮合力位置 で与えられる距離を採用すべきである。本年度の報告書では、便宜的に直交壁芯心間距離 で検証を進め、詳細な検証は今後も行っていきたい。

図-5.1.1及び図-5.1.2に、Tq及びΣTnとログ材間相対上下方向変位との関係を示すが、 図は JMA 神戸海洋波のみを比較対象とし、かつ、同地震波加振で得られた履歴曲線中の主 要な 2 つのループ時のみを示している。

これらの図より,層せん断力から求めたログ壁脚部の引張力(Tq:図中青線)は,実測値 となるダボ引き抜き力(ΣTn:図中赤線)より約2倍程度大きい傾向にあった。その要因と しては,直交壁に配したダボの引張力がΣTnに加算されていないことが要因の1つに挙げ られる。
①層せん断力から求まる引張力

 $Tq = (Q \times H - W \times B / 2) / B$

ここで, H=2700mm, B=3300mm, W=21.9kN

②ダボ軸力測定値による引張力

鋼製ダボ 1.0 試験体: ΣTn=Tn(D01)+Tn(D04)

鋼製ダボ 1.5 試験体: ΣTn=Tn(D07)+Tn(D01)+Tn(D04)

鋼製ダボ 2.0 試験体: ΣTn=Tn(D07)+Tn(D01)+Tn(D04)

ここで、Tn(D07)、Tn(D01)、Tn(004)は、ダボ軸力測定値

模式図 層せん断力とダボ引張軸力との釣り合いについて

試験体記号:鋼製ダボ1.0・1.5・2.0 加振波形:JMA神戸海洋波50%

(注) Sult, D07の位置に取り付けた相対上下方向変位である。

図-5.1.1 Tq及びΣTnとログ材間相対上下方向変位との関係

試験体記号:鋼製ダボ1.0・1.5・2.0 加振波形:JMA神戸海洋波100%-1回目

(注) Sult, D07の位置に取り付けた相対上下方向変位である。

図-5.1.2 Tq 及びΣTn とログ材間相対上下方向変位との関係

5.2 検証方法②

前項の結果を受け、本項ではダボ引張(ΣTn)に対して直交壁に配したダボ引張力を加 算したもので比較する。但し、実際の試験時には、直交壁ダボの軸力を計測していないの で最外縁ダボの計測値を2倍した。図-5.2.1及び図-5.2.2に、先に示した図-5.1.1及 び図-5.1.2のΣTnに直交壁ダボ軸力を加算した際の結果を示す。

鋼製ダボ 1.0 試験体: ΣTn=Tn(D01)×2+Tn(D04)
鋼製ダボ 1.5 試験体: ΣTn=Tn(D07)×2+Tn(D01)+Tn(D04)
鋼製ダボ 2.0 試験体: ΣTn=Tn(D07)×2+Tn(D01)+Tn(D04)
ここで、Tn(D07)、Tn(D01)、Tn(004)は、ダボ軸力測定値

図-5.2.1及び図-5.2.2を見ると、JMA 神戸海洋波 50%加振の第 1 ループに関しては、 いずれの試験体も概ね Tq と Σ Tn が一致した。その他は、依然 Tq の方が Σ Tn より小さい傾向にあるものの両者の差が小さくなった。 試験体記号:鋼製ダボ1.0・1.5・2.0 加振波形:JMA神戸海洋波50%

(注) Sult, D07の位置に取り付けた相対上下方向変位である。

図-5.2.1 Tq 及びΣTn とログ材間相対上下方向変位との関係 (直交壁ダボ軸力考慮) 試験体記号:鋼製ダボ1.0・1.5・2.0 加振波形:JMA神戸海洋波100%-1回目

(注) Sult, D07の位置に取り付けた相対上下方向変位である。

図-5.2.2 Tq 及びΣTn とログ材間相対上下方向変位との関係 (直交壁ダボ軸力考慮)

5.3 検証方法③

要素壁一次元振動台試験時の加振中の目視観察及びその映像などを見ると、開口より兆 部のログ材(垂れ壁部分)では、水平ずれ及び上下開きなどが見られなかった。従って、垂 れ壁部分でも、少なからず水平及び上下変位が生じているが、その変位量は他の箇所と比 べて小さいと考えられる。そこで本項では、地震力の作用によりログ壁脚部に生じるモー メントを算出する際に次の高さを乗じた。すなわち、開口より上段のログ壁(垂れ壁)部分 は剛と仮定し、開口上から土台までの距離である。図-5.3.1及び図-5.3.2に、図-5.2.1 及び図-5.2.2のTqを本方法で算出したものの結果を示す。

 $Tq = (Q \times H - W \times B / 2) / B$

ここで, H=2160mm, B=3300mm, W=21.9kN

図-5.3.1及び**図-5.3.2**より,JMA 神戸海洋波 50%加振の第1ループは,ΣTn がTqより大きくなる傾向になったが,その他は大略,ΣTn とTq が一致する傾向にあった。

模式図 層せん断力とダボ引張軸力との釣り合い

試験体記号:鋼製ダボ1.0・1.5・2.0 加振波形:JMA神戸海洋波50%

(注) δuは, D07の位置に取り付けた相対上下方向変位である。

図-5.3.1 Tq 及びΣTn とログ材間相対上下方向変位との関係 (層せん断力により生じる脚部モーメントの検討) 試験体記号:鋼製ダボ1.0・1.5・2.0 加振波形:JMA神戸海洋波100%-1回目

(注) Sult, D07の位置に取り付けた相対上下方向変位である。

図-5.3.2 Tq 及びΣTn とログ材間相対上下方向変位との関係 (層せん断力により生じる脚部モーメントの検討)

5. 4 静的面内せん断試験との比較(参考)

この項では,上記 5.1 項~5.3 での検証内容を静的面内せん断試験結果*について参考と して示す。静的面内せん断試験時の試験体は,要素壁一次元振動試験時の鋼製ダボ 2.0 試 験体と同じにあるが,ログ材間にテフロンシートを設けることで摩擦有無とした 2 体があ

る。図-5.4.1~図-5.4.3にTq及びΣTnとログ材間相対上下方向変位の関係を示す。

ここで,

図-5.4.1:検証方法①(高さを階高 H=2700mm とし, 直交壁ダボ軸力考慮なし)

図-5.4.2:検証方法②(高さをHとし,直交壁ダボ軸力を考慮)

図-5.4.3:検証方法③(高さを開口までのH=2160mmとし,直交壁ダボ軸力を考慮) である。

なお,本試験体では,鋼製ダボ 2.0 試験体で測定した D04 のダボ軸力を測定していない。 図-5.4.2 及び図-5.4.3 では, D04 の引張軸力として D01 の引張軸力の 1/2 を加えた。 また,図-5.4.1 及び図-5.4.2 での高さ H は,ジャッキ取り付け位置(最上段ログ材の中 心位置でログ材 14 段+ログ材 0.5 段分の高さ)としている。

各図より,摩擦有りとした試験体(試験体記号:Friction-H1.0)は,概ね検証方法①での 適合性が良く,検証方法②及び検証方法③は Tq に対してΣTn の方が高い値にあった。逆 に,摩擦無しとした試験体(試験体記号:Non Friction-H1.0)は,検証方法①は一次元振動 台試験と同様に Tq はΣTn の約2倍高い値を示し,検証方法②及び検証方法③の方がむし ろ Tq とΣTn の適合性が良い傾向にあった。

* 依頼番号 08R034 号, 平成 21 年 3 月発行(平成 21 年 2 月試験実施)

試験体記号:Friction-H1.0, Non Friction-H1.0 試験項目:静的面内せん断

図-5.4.1 Tq 及び Σ Tn とログ材間相対上下方向変位との関係

試験体記号:Friction-H1.0, Non Friction-H1.0 試験項目:静的面内せん断

図-5.4.2 Tq 及びΣTn とログ材間相対上下方向変位との関係

試験体記号:Friction-H1.0, Non Friction-H1.0 試験項目:静的面内せん断

図-5.4.3 Tq 及びΣTn とログ材間相対上下方向変位との関係

5.5 本章まとめ

以上から,層せん断力とダボ引張力の関係に対して次のことが言える。すなわ,窓型開 ロによるログ壁においては,垂れ壁を剛と仮定し層せん断力に開口頂部から土台天端まで の距離を乗じたモーメントから算出しえれる引張力が,ダボ引き抜き力の合計値に最も適 合性が良い。但し,静的面内せん断試験では,必ずしもそれが妥当とは言えない結果とな っていた。

一方,本報告では,幾つかの問題点を有している。1 点目はログ壁脚部の応力中心問距 離(ダボ引張力とログ材のめり込み圧縮力間距離)であり,引張力の合力中心位置と圧縮 力の合力中心位置に関するより詳細な検証が必要である。2 点目は窓型タイプの試験体に ついて検証したが,その際,試験体の有効幅を直交壁芯心間距離で取り扱っている。本問 題点は,上記の問題点と関連することであるが,今後検証すべき開口形状が掃き出しタイ プのような壁ごとの回転性状を考慮した応力中心間距離を具体化すべきである。3 点目は 地震力の作用する高さであり,本報告ではログ壁を剛と仮定し脚部のみを検証したが,実 際はログ材間の水平ずれ及び開口際頂部でもログ材間の開きが生じるので,これらの挙動 を含めた検証が必要である。

本報告では,層せん断力とダボ引張力の関係を調べるべき基礎的分析と位置付け,上記 問題点を考慮したより詳細な分析が今後必要と言える。

6. 動的時の剛性

6.1 はじめに

4 章 4 項において,鋼製ダボ単体の一面せん断試験から得られる初期剛性(せん断剛性)に ついて検証した。その結果,実施工を想定した試験体は現行の丸太組技術基準で与えられる 初期剛性より高いが,接合界面の摩擦力を無くしたもの及びダボ頭を無くした試験体は丸太 組技術基準と概ね一致することが明らかとなった。従って,現行基準ではダボ頭が無く摩擦 を無視した下限値が与えられていることになる。実態は丸座金を介したダボ締め付けによる 摩擦力,鉛直軸力による摩擦力などが作用しているため,同基準は実態に即していない。

そうした背景に対して実際の建物におけるせん断剛性を調べるため,要素壁一次元振動台 試験を対象に動的時の剛性を調べた。検討対象に用いた試験体は以下である。

- (1) 要素壁における開口の形態を窓型としダボ量を変えた3体*1(試験体記号:鋼製ダボ1.0, 鋼製ダボ1.5及び鋼製ダボ2.0)
- ② 同様に掃き出し開口とし前記①との比較を兼ねた1 体(試験体記号:掃き出し)及びこれ にすだれ壁を有する2 体の合計3 体*2(試験体記号:L=1000 及びL=2000)

その際に検討する地震波としては、JMA 神戸海洋波 50%加振及び JMA 神戸海洋波 100%-1 回目加振を取り上げる。また、同地震波加振から得られた層せん断力-層間変形角曲線にお いて、第1象限での主要なループを描いた第1ループ及び第2ループを調べる。表-6.1.1 に試験体の概要を、表-6.1.2に試験体の基礎的な諸元を示す。

図-6.1.1-1~図-6.1.1-6 に,層せん断力及び層間変形角の時刻歴波形(代表的時刻)と して,JMA 神戸海洋波 50%加振を示す。同様にして,図-6.1.2-1~図-6.1.2-6 に,JMA 神 戸海洋波 100%-1 回目加振を示す。図中には、参考として、第1ループ開始点~第2ループ 終了点(いずれも層せん断力=0 の点)を青実線で示している。

図-6.1.3-1及び図-6.1.3-2に,入力波形(振動台計測値)から求めた加速度応答スペクトル(Sa) -変位応答スペクトル(Sd)曲線を示す。なお、窓型タイプ試験体及び掃き出しタイプ 試験体それぞれは、一次元振動台上に試験体3体を設置し同時加振を行っているので、これ らの Sa-Sd 曲線は同じにある。

*1 依頼番号 07R026 号, 平成 20 年 10 月発行(平成 20 年 4 月試験実施)

*2 依頼番号 10R002 号, 平成 23 年 2 月発行予定(平成 22 年 10 月試験実施)

試験体 記号	試験項目	試験体概要	ログ材	加振方向の 壁長さ [mm]	鋼製ダボ 本数 [本]
鋼製ダボ 1.0					2
鋼製ダボ 1.5		窓型開口による 要素ログ壁	すぎ E70	3300	3
鋼製ダボ 2.0	一次元				4
掃き出し	振動台	掃き出し開口による 要素ログ壁		3300	3
L=1000		掃き出し開口及び すだれ壁(長さ 1000mm)付き 要素ログ壁	すぎ E50	4300	5
L=2000		掃き出し開口及び すだれ壁(長さ 2000mm)付き 要素ログ壁		5300	5

表-6.1.1 試験体の概要

(注) 1. 表中,鋼製ダボの本数においてログ材一段当たりに設ける列数である。

2. 試験体の壁長さは,直交壁芯心間距離である。

3. 試験体の高さは,いずれも 2700mm である。

4. 試験体の高さは、いずれも 2700mm である。

試験体	試験体重量		ΣQi	Qy	Dn	ΣQy	I J	
記号	項目	Wi [N]	ΣWi [N]	[kN]	[kN]	[本]	[kN]	Ld
鋼製ダボ 1.0	試験体 質点重量	9932	68276	13.66	6.905	2	13. 81	1.01
	ログ壁構面 負担軸力	11934						
	直交壁 地震力	46410						
鋼製ダボ 1.5	試験体 質点重量	9932	68276	13.66		3	20. 72	1.52
	ログ壁構面 負担軸力	11934						
	直交壁 地震力	46410						
鋼製ダボ 2.0	試験体 質点重量	9932	68276	13.66		4	27.62	2.02
	ログ壁構面 負担軸力	11934						
	直交壁 地震力	46410						
掃き出し	試験体 質点重量	8866	65755	13. 15	6.554	3	19.66	1.50
	ログ壁構面 負担軸力	11907						
	直交壁 地震力	44982						
L=1000	試験体 質点重量	11642	109545	21. 91		5	32. 77	1.50
	ログ壁構面 負担軸力	17199						
	直交壁 地震力	80704						
L=2000	試験体 質点重量	13023	109161	21. 83		5	32.77	1.50
	ログ壁構面 負担軸力	22050						
	直交壁 地震力	74088						

表-6.1.2 試験体の基礎的な諸元

(注) 表中の記号は次の内容を示す。

 $\Sigma Qi: CO=0.2$ 時の地震力, Qy:鋼製ダボ1本当たりの降伏せん断耐力計算値 Dn:ダボ本数, $\Sigma Qy: Qy \times Dn$, Ld: $\Sigma Qy/Qi$

宿じの町刀(ほど)と宿间変が円(/X) 画脉

図-6.1.1-1 層せん断力及び層間変形角の時刻歴波形

図-6.1.1-2 層せん断力及び層間変形角の時刻歴波形

図−6.1.1−3 層せん断力及び層間変形角の時刻歴波形

試験体記号:掃き出し 加振波形:JMA神戸海洋波(NS成分)50%

図-6.1.1-4 層せん断力及び層間変形角の時刻歴波形

試験体記号:L=1000

-60 -40 -20 00 20 40 60 層間変形角 γx [×10⁻³rad] -60 -80 層せん断力 (Qx) と層間変形角 (γx) 曲線

図−6.1.1−5 層せん断力及び層間変形角の時刻歴波形

層せん断カ(Qx)と層間変形角(γx)曲線

-80[|]

図ー6.1.1-6 層せん断力及び層間変形角の時刻歴波形

図-6.1.2-1 層せん断力及び層間変形角の時刻歴波形

図-6.1.2-2 層せん断力及び層間変形角の時刻歴波形

図−6.1.2−3 層せん断力及び層間変形角の時刻歴波形

図−6.1.2−4 層せん断力及び層間変形角の時刻歴波形

図−6.1.2−5 層せん断力及び層間変形角の時刻歴波形

層せん断力(Qx)と層間変形角(γx)曲線

図-6.1.2-6 層せん断力及び層間変形角の時刻歴波形

図-6.1.3-1 入力波形(振動台計測値)から求めた Sa-Sd 曲線

図-6.1.3-2 入力波形(振動台計測値)から求めた Sa-Sd 曲線

6.2 特定変形角時の特性値

6.1項で示した層せん断力-層間変形角曲線での第1ループ及び第2ループ(いずれも第
1象限を対象)から、特定変形角時の層せん断力及び層間変形角を読み取った。特定変形角は、以下に示す変形(合計11点)である。

(1)1/300rad, (2)1/200rad, (3)1/150rad, (4)1/120rad, (5)1/100rad, (6)1/90rad, (7)1/80rad, (8)1/75rad, (9)1/60rad, (10)1/50rad, (11)1/30rad

なお、上記⑨は、丸太組技術基準で与えられる設計変形角であるが、その妥当性に関す る基礎的資料の取得を目的とし、初期時の変形(上記①~④)、降伏後の剛性低下が予測さ える変形(上記⑤~⑦)を取り上げている。

そのうち,②の1/200radは、政令第82条「許容応力度計算」中の第2項「層間変形角」 で規定される許容変形角であり、④の1/120radは同政令中において、地震力による構造耐 力上主要な部分の変形によって特定建築物の部分に著しい損傷が生じるおそれのない場合 の許容変形角である。変形角1/120radは、政令46条「構造耐力上必要な軸組等」の第4 項に係わる昭和56年建告第1100号「壁倍率の数値を定める件」において、短期基準せん 断耐力を求める際の評価基準の1つにもなっている。これら1/200rad(又は1/120rad)は、 平成12年改正建築基準法施行令で取り入れられた政令第82条の第6項「限界耐力計算」 で与えられている損傷限界変形としても与えられている。従って、①及び③を含めた 1/300rad~1/120rad時の挙動を知ることは、他の構造物と対比させたログハウスの許容変 形角を考察する上で重要になる。

⑧の1/75radは,政令第82条の第6項第5号における一般的な建築物の安全限界変形を示し、⑪の1/30radは木質系構造物におけるそれである。⑩の1/50radを超える安全限界変形は、平成12年建告第1457号の第3項において、P- △効果による問題がないかを確認する必要がある変形角として与えられている。

(注)1.上記,政令とは,建築基準法施行令を指す。

2. 上記の特定変形角については、以下の文献を参照されたい。

①編集 国土交通省住宅局建築指導課 他:2001年版 建築物の構造関係技術基準解説書

「第 I編 第 6 章 許容応力度計算, 第 7 章 限界耐力計算」, 講習会テキスト,

pp219~pp304及び pp305~pp326, 平成 13 年 3 月

②編著 国土交通省建築研究所:改正建築基準法の構造関係規定の技術的背景「第 2章 限界耐力計算」,

ぎょうせい, pp9~pp116, 平成 13 年 3 月

③企画編集 日本住宅・木材技術センター:木造軸組工法住宅の許容応力度設計 2008 年版

「第6章 試験方法と評価方法」, pp563~pp574, 平成 20 年 12 月

④編集 国土交通省住宅局建築指導課 他:2001年版 限界耐力計算法の計算例とその解説
 「第 I編 限界耐力計算の概要」,pp1~pp60,平成13年3月

⑤監修 国土交通省住宅局建築指導課 他:2007年版 建築物の構造関係技術基準 解説書

「第4章 構造計算による安全確認,第6章 保有水平耐力計算等の構造 計算,第7章 限界耐力計算」, pp215~pp236, pp279~pp414, pp415~pp445, 平成19年8月 図-6.2.1~図-6.2.6に窓型タイプ試験体の,図-6.2.7~図-6.2.12に掃き出しタイ プ試験体の特定変形角時における特性値を示す。

ここで, 各図の内容を説明する。

①最上段の図

- (a)特定変形角時の層せん断力(Qx)分布である。
- (b) 図中には、同加振時の入力波形(振動台上で計測された加速度波形)をもとに算出した加速度応答スペクトルー変位応答スペクトル(SA-SD 曲線:図-6.1.3-1 及び図-6.1.3-2のh=0.05場合)を、せん断力ー変形角関係に換算したものを参考としてプロットした。
- (c) 図中のΣQy は, 鋼製ダボ降伏せん断耐力計算値(表-6.1)である。
- (d) 図中の Nv は, 摩擦力を示し, Wi のうち試験体質点重量とログ壁構面負担軸力を足した 重量(Wn)に摩擦係数 0.5 を乗じた値(Nv=Wn×0.5)である。
- (e) ΣQy+Nv は, 上記(c)及び(d)を足した値である。
- (f) 図中の y d は, 丸太組技術基準で与えられている設計変形角 (1/60rad) である。

2中段の図

 (a) 上記①の図から,特定変形角時ごとに求めた等価剛性(Ke=Qx/δx)である。ここで、 δx は層間変位を示す。

③最下段の図

(a) 上記②で得られた等価剛性(Ke)をもとに算出した等価周期(Te)を等価振動数(fe)に
 換算した値である。

ここで,
$$fe = \frac{1}{Te} = 2\pi \sqrt{\frac{Ke}{\Sigma Wi}}$$
で ΣWi は表 - 6.1 による。

なお,図中には,同加振の前後に行ったランダム波加振より得られている固有振動数も 示している。 各図において,次のことが言える。

- i)層せん断力については、JMA 神戸海洋波 50%加振での最大層間変形角が 1/60rad 以下 のものもあり一概に言えないが、概ね 1/60rad 時には降伏せん断耐力計算値(ΣQy)以 上の層せん断力が得られている。第1サイクルに限定すれば、ΣQy に達するときの層 間変形角は 1/150rad~1/120rad 程度であった。但し、試験体には摩擦力が生じており、 これを含めた(ΣQy+Nv)で見ると窓型タイプの3体(鋼製ダボ1.0, 1.5, 2.0)は概ね 1/90rad~1/75rad 程度、掃き出しタイプの3体はばらつきが大きく顕著な傾向が見ら れない。
- ii)等価剛性を見ると、約 1/200rad~1/150rad 時に剛性が急変する傾向があった。また4 章4項でも述べた通り丸太組技術基準での設計剛性は 2[kN/mm]前後であるが、これを 越す変形角は 1/300rad のみで、試験体によっては 1/300rad の時点で 2[kN/mm]を下回 るものもあった。
 - iii)等価振動数は、等価剛性の低下とともに小さくなっているが、その低下率はわずかであった。但し、ランダム波加振から得られた固有振動数に比べると著しく小さい。

以上から,丸太組技術基準で与えられている現行の設計変形角は,ある種ばらつきを考 慮すれば妥当と考えられるが,より詳細な検証が必要と考える。但し,丸太組技術基準で は,摩擦力が考慮されていないので,少なくともこれを考慮しても良い傾向が本結果から 伺える。

図-6.2.1 特定変形角時の特性値

図-6.2.2 特定変形角時の特性値

図-6.2.3 特定変形角時の特性値

図-6.2.4 特定変形角時の特性値

図-6.2.5 特定変形角時の特性値

図-6.2.6 特定変形角時の特性値

図-6.2.7 特定変形角時の特性値

図-6.2.8 特定変形角時の特性値

図-6.2.9 特定変形角時の特性値

試験体:L=1000 加振波形:JMA神戸海洋波

100%-1回目

図-6.2.10 特定変形角時の特性値

図-6.2.11 特定変形角時の特性値

試験体:L=2000

加振波形:JMA神戸海洋波

100%-1回目

図-6.2.12 特定変形角時の特性値

6.3 地震波加振時の固有振動数

(1)要素壁試験体の一次元振動台試験(JMA神戸海洋波 50%及び 100%-1回目)

前項 6.2 において,層せん断カー層間変形角曲線上の等価剛性を算出し,それから得ら れる等価周期(等価振動数)を示した。ここでは,地震波加振時の応答加速度波形をフーリ エ変換したフーリエ・スペクトルから加振中の卓越固有振動数を読み取った。なお,応答 加速度波形はいずれも平均化(バンド幅 0.2Hz)した波形を用いており,振動台に対する フーリエ・スペクトル比で示している。また,第1ループ開始点~第2ループ終了点の時 刻を算出対象とし,その場合データ数が少なくなるのでサンプリング周期 1000Hz のデータ を用いた。

図-6.3.1-1~図-6.3.1-3 に窓型タイプ試験体の,図-6.3.2-1~図-6.3.2-3 に掃き出 しタイプ試験体の地震波加振時の卓越振動数を示す。

これら図の傾向から,いずれも2次の振動数と思われるような卓越振動数が10Hz以降に 見られるが,結果としていずれもJMA神戸海洋波加振時に明確な傾向(1次の固有振動数に 相当するであろう10Hz以下の固有振動数)が見られなかった。

試験体:鋼製ダボ1.0 加振波形:JMA神戸海洋波50%及び100%-1回目

JMA神戸海洋波100%-1回目(12.32~13.71sec間)

(注)1.平均化は、バンド幅0.2Hzによる。
2.フーリエ・スペクトル比は、振動台に対する比(2X/0X)を示す。

ここで, 0Xは振動台の, 2Xは2階床のフーリエ・スペクトル

図-6.3.1-1 地震波(JMA神戸海洋波)加振時の卓越振動数

試験体:鋼製ダボ1.5 加振波形:JMA神戸海洋波50%及び100%-1回目

- 0MAT中广海汗波100%-1回日(12.30**14.013e0间

(注)1.平均化は,バンド幅0.2Hzによる。

フーリエ・スペクトル比は、振動台に対する比(2X/OX)を示す。
ここで、OXは振動台の、2Xは2階床のフーリエ・スペクトル

図-6.3.1-2 地震波(JMA神戸海洋波)加振時の卓越振動数

試験体:鋼製ダボ2.0 加振波形:JMA神戸海洋波50%及び100%-1回目

JMA神戸海洋波50%(12.24~13.84sec間)

JMA神戸海洋波100%-1回目(12.28~13.96sec間)

(注)1.平均化は, バンド幅0.2Hzによる。

フーリエ・スペクトル比は、振動台に対する比(2X/OX)を示す。
ここで、OXは振動台の、2Xは2階床のフーリエ・スペクトル

図-6.3.1-3 地震波(JMA神戸海洋波)加振時の卓越振動数

試験体:掃き出し

加振波形:JMA神戸海洋波50%及び100%-1回目

JMA神戸海洋波100%-1回目(8.87~10.66sec間)

(注)1.平均化は, バンド幅0.2Hzによる。

フーリエ・スペクトル比は、振動台に対する比(2X/0X)を示す。
ここで、0Xは振動台の、2Xは2階床のフーリエ・スペクトル

図-6.3.2-1 地震波(JMA神戸海洋波)加振時の卓越振動数

試験体:L=1000

加振波形:JMA神戸海洋波50%及び100%-1回目

JMA神戸海洋波100%-1回目(8.91~11.09sec間)

(注)1.平均化は, バンド幅0.2Hzによる。

フーリエ・スペクトル比は、振動台に対する比(2X/OX)を示す。
ここで、OXは振動台の、2Xは2階床のフーリエ・スペクトル

図-6.3.2-2 地震波(JMA神戸海洋波)加振時の卓越振動数

試験体:L=2000

加振波形:JMA神戸海洋波50%及び100%-1回目

JMA神戸海洋波100%-1回目(8.88~10.63sec間)

(注)1.平均化は, バンド幅0.2Hzによる。

2.フーリエ・スペクトル比は, 振動台に対する比(2X/OX)を示す。 ここで, 0Xは振動台の, 2Xは2階床のフーリエ・スペクトル

図-6.3.2-3 地震波(JMA神戸海洋波)加振時の卓越振動数

(2)要素壁試験体の一次元振動台試験(BCJ波レベル I 33%)

前記(1)の結果を踏まえ,BCJ 波レベルI 33%加振時における加振中の卓越固有振動数 を同様にして求めた。その際,同加振で得られた層せん断カー層間変形角曲線から等価剛 性(Ke)を求め,その剛性から逆算して得られる等価振動数(fe)と,地震波加振後に行った ランダム波加振から得られた固有振動数(fr)の関係も調べた。なお,表-6.3.1 には,ラ ンダム波加振から得られた固有振動数一覧を,試験開始時からJMA 神戸海洋波 100%-1 回目加振後までを示した。図-6.3.3 は,層せん断カー層間変形角曲線である。表-6.3.2 は,図-6.3.3 から読み取った等価剛性(Ke)をもとに算出した振動特性一覧であり,図-6.3.4-1 及び図-6.3.4-2 は加振中の振動特性及び等価振動数(fe)と固有振動数(fr)の関 係である。

図-6.3.4-1及び図-6.3.4-2における上段の図と表-6.3.1を見比べると、加振中の 卓越固有振動数はランダム波加振から得られた固有振動数と大きな違いが見られなかった。 また、図-6.3.4-1及び図-6.3.4-2における下段の図を見ると、等価剛性から求まる等価 振動数は、ランダム波加振から得られた固有振動数とも概ね一致している。本加振は、中 地震(周波数特性のない地震波として設計時に用いられている地震波を 5%減衰弾性応答 スペクトルで 0.26 程度になるよう加速度を基準化)を想定したものであるため、CO=0.2 相 当の地震に対する剛性の把握が出来たと考える。

	固有振動数							
	fr							
加振内容	[Hz]							
	鋼製ダボ	鋼製ダボ	鋼製ダボ	目を山下	I = 1000	L-2000		
	1.0	1.5	2.0	捕る山し	L-1000	L-2000		
試験開始時	4.91 (0.204)	5.60 (0.179)	5.91 (0.169)	3.89 (0.257)	3.58 (0.279)	4.42 (0.226)		
BCJ 波 レベル I 33% 加振後	4.90 (0.204)	5.60 (0.179)	5.91 (0.169)	3.88 (0.258)	3.47 (0.288)	4. 41 (0. 227)		
JMA 神戸海洋波 (NS 成分)50% 加振後	4.75 (0.211)	5.53 (0.181)	5.55 (0.180)	3.72 (0.269)	3.19 (0.313)	4.30 (0.233)		
JMA 神戸海洋波 (NS 成分)100% -1 回目 加振後	4.57 (0.219)	4.80 (0.208)	4.99 (0.200)	3.38 (0.296)	2.66 (0.376)	3.82 (0.262)		

表-6.3.1 ランダム波加振から得られた固有振動数の一覧

(注)表中,上段が固有振動数を示し,下段()内は固有周期[sec]を示す。

試験体記号	工员	等価剛性	等価周期	等価振動数
	止・須	[kN/cm]	[sec]	[Hz]
御生した。ド	正側	63.5	0.208	4.80
	負側	53.9	0.226	4.42
1.0	平均	58.7	0.217	4.61
細制ダモ	正側	89.1	0.176	5.69
	負側	90.1	0.175	5.72
1.5	平均	89.6	0.175	5.71
鋼製ダボ 2.0	正側	97.9	0.168	5.97
	負側	110.1	0.158	6.33
	平均	104.0	0.163	6.15
掃き出し	正側	14.8	0.423	2.36
	負側	15.9	0.408	2.45
	平均	15.4	0.416	2.41
	正側	18.4	0.489	2.04
L=1000	負側	19.6	0.474	2.11
	平均	19.0	0. 482	2.08
L=2000	正側	28.2	0.395	2.53
	負側	36.8	0.346	2.89
	平均	32.5	0.371	2.71

表-6.3.2 BCJ 波レベル I 33% 加振から得られた振動特性一覧

図-6.3.3 BCJ波レベルI 33%加振時の層せん断カー層間変形角曲線

試験体:鋼製ダボ1.0, 1.5, 2.0 加振波形:BCJ波レベルI 33%

(注) フーリエ・スペクトル比は、平均化(バンド幅0.2Hz)して求めた振動台に対する比(2X/0X)を示す。
ここで、0Xは振動台の、2Xは2階床のフーリエ・スペクトルなお、図中の数値は、1次の卓越固有振動数である。

図-6.3.4-1 加振中の卓越振動数及び等価振動数と固有振動数の関係

試験体:掃き出し、L=1000,L=2000 加振波形:BCJ波レベルI 33%

図-6.3.4-2 加振中の卓越振動数及び等価振動数と固有振動数の関係

(3) 実大試験体の三次元振動台試験(BCJ 波レベル I 33%)

前記(2)より,要素壁に関しては,加振中の振動特性(加振中の応答加速度波形をフーリ エ変換して求めたもの)とランダム波加振から求めた振動特性は概ね一致することが分か った。更に,層せん断力-層間変形角曲線の等価剛性から求めた等価振動数もランダム波 加振による振動特性とも一致していた。これらの結果を受け,ここでは実大三次元振動台 試験*^{1,*2}についても同様に調べた。

その際,本試験体は2質点系となるので,各階の等価剛性を求め,各階質量を用いた次 式により等価振動数(等価周期)を算出した。

 $\begin{bmatrix} \mathbf{M} \end{bmatrix} = \begin{bmatrix} \mathbf{m}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{m}_1 \end{bmatrix} \quad , \qquad \begin{bmatrix} \mathbf{K} \end{bmatrix} = \begin{bmatrix} \mathbf{k}_1 + \mathbf{k}_2 & -\mathbf{k}_2 \\ -\mathbf{k}_2 & \mathbf{k}_2 \end{bmatrix}$

 $\left[-\omega^2 \cdot \mathbf{M} + \mathbf{K}\right] = 0 \ \ \mathbf{J} \ \ \mathbf{h} \ \ \mathbf{fe} = \frac{1}{\mathrm{Te}} = \frac{\omega}{2\pi}$

ここで, m₁及びm₂:1階及び2階の質量

k₁及びk₂:1 階及び2 階の等価剛性

ω:試験体の固有振動数

Te及びfe:試験体の等価周期及び等価振動数

表-6.3.3 に、ランダム波加振から得られた固有振動数一覧を試験開始時から BCJ 波レベル I 33%加振後までを示した。図-6.3.5-1 及び図-6.3.5-2 に、層せん断力-層間変形角曲線を示す。表-6.3.4 は、図-6.3.5-1 及び図-6.3.5-2 から読み取った等価剛性(k₁及びk₂)をもとに算出した振動特性一覧である。

図-6.3.6-1 及び図-6.3.6-2 に,加振中の卓越振動数及び等価振動数(fe)と固有振動数 (fr)の関係を示す。ここで, fr はランダム波加振から得られた固有振動数である。

*1 平成19年7月に実施した、2階建て木造丸太組構法住宅の三次元振動台試験
(依頼番号:07R003号,平成20年3月発行)

本試験体は,一般的な2階建て住宅を想定した試験体である。

*2 平成19年10月に実施した,仮想3階建て木造丸太組構法住宅の三次元振動台試験 (依頼番号:07R004号,平成20年3月発行) 本試験体は,上記①と形状・規模が同じ試験体に対して,3階建て相当の重量を積載

本試験体は,上記①と形状・規模が向し試験体に対して,3階建て相当の重重を積載 したものである。 これらの結果から,実大試験体に関しても等価剛性から求めた等価振動数は,ランダム波 加振から得られた固有振動数と一致しており,かつ,加振中の振動数とも一致していた。 従って,ログハウスにおける C0=0.2 時の中地震に関する基礎的データの取得ができたと 判断する。

	固有振動数				
加振内容	fr [Hz]				
	実大 Ver1	実大 Ver2			
試験開始時	6. 79 (0. 147)	4.92 (0.230)			
BCJ 波 レベル I 33% 加振後	6.68 (0.150)	4.08 (0.245)			

表-6.3.3 ランダム波加振から得られた固有振動数の一覧

(注)表中,上段が固有振動数を示し,下段()内は固有周期[sec]を示す。

封殿体司只	工。在	等価剛性	等価周期	等価振動数
試験体記号 止・負		[kN/cm]	[sec]	[Hz]
	1 階正	343		
実大 Ver1	1 階負	324	0,150	6.99
X 方向	2 階正	377	0.159	0.20
	2 階負	262		
	1 階正	418		
実大 Ver1	1 階負	363	0 144	6.07
Y 方向	2 階正	611	0.144	0.97
	2 階負	514		
	1 階正	155		
実大 Ver2	1 階負	142	0.286	2 50
X 方向	2 階正	501	0.280	5.00
	2 階負	536		
	1 階正	216		
実大 Ver2	1 階負	257	0 929	4 22
Y 方向	2 階正	199	0.232	4. 33
	2 階負	227		

表-6.3.4 BCJ 波レベル I 33% 加振から得られた振動特性一覧

(注)等価周期及び等価振動数は、正及び負の平均値のみを示した。

図-6.3.5-1 BCJ波レベル I 33% 加振時の層せん断カー層間変形角曲線

図-6.3.5-2 BCJ波レベル I 33% 加振時の層せん断カー層間変形角曲線

試験体:実大Ver1 加振波形:BCJ波レベルI 33%

図-6.3.6-1 加振中の卓越振動数及び等価振動数と固有振動数の関係

試験体:実大Ver2 加振波形:BCJ波レベルI 33%

図-6.3.6-2 加振中の卓越振動数及び等価振動数と固有振動数の関係

6. 4 ログ壁の回転剛性

本項では、一次元振動台試験時に測定したログ材間の相対上下方向変位のうち、特定変 形角時における特性値として回転剛性の算出を試みた。なお、本項の内容は、今後分析す べきロッキング挙動に対する基礎的データとして結果のみを示すに留めている。

図-6.4.1-1~図-6.4.1-5 には,各試験体回転角算出の概要を示した。回転剛性は,層 せん断力(Qx)を壁ごとに得られた回転角(θud)で除して求めた値である。

図-6.4.2-1 及び図-6.4.2-2 に窓型タイプ試験体の,図-6.4.3-1~図-6.4.3-3 に掃き出しタイプ試験体のログ壁脚部の回転剛性を示す。各図,開口部分を境界とした左壁及び右壁ごとに示し,掃き出しタイプ試験体のうちすだれ壁を有するものはこれに関するものも示した。

図-6.4.4-1~図-6.4.4-3 は窓型タイプ試験体の,図-6.4.5-1~図-6.4.5-3 は掃き出 しタイプ試験体の全時刻における層せん断力-ログ壁回転角の関係である。図-6.4.6-1 及び図-6.4.6-2 は、3 階建て試験体(試験体記号:3F*1及び 3F 偏心*2)に関するもので、 参考として示した。

*1 依頼番号 09R025 号, 平成 22 年 2 月発行(平成 21 年 12 月試験実施)

*2 依頼番号 10R001 号, 平成 23 年 2 月発行予定(平成 22 年 12 月試験実施)

750 1300 750

左壁,開口上側: θud= (UD09-UD03) /750 右壁,開口上側: θud= (UD06-UD12) /750 左壁,開口下側: θud= (UD08-UD02) /750 右壁,開口下側: θud= (UD05-UD11) /750 左壁,壁脚部 : θud= (UD07-UD01) /750 右壁,壁脚部 : θud= (UD04-UD10) /750

図-6.4.1-1 窓型タイプ試験体(試験体記号:鋼製ダボ1.0, 1.5, 2.0)

左壁,開口上側: θ ud= (UD06-UD02) /750 右壁,開口上側: θ ud= (UD04-UD08) /750 左壁,壁脚部 : θ ud= (UD05-UD01) /750 右壁,壁脚部 : θ ud= (UD03-UD07) /750

図-6.4.1-2 吐き出しタイプ試験体(試験体記号:掃き出し)

単位 mm

すだれ壁,開口上側	:	θ ud =	(UD04-UD06)	/ (B+300)
右壁,開口上側	:	θ ud =	(UD08-UD12)	/750
左壁,壁脚部	:	θ ud =	(UD09-UD01)	/750
すだれ壁,壁脚部	:	θ ud =	(UD03-UD05)	/ (B+300)
右壁,壁脚部	:	θ ud =	(UD07-UD11)	/750

図-6.4.1-3 吐き出しタイプ試験体(試験体記号:L=1000及びL=2000)

単位 mm

535	1200	1435

左壁,開口上側	: θ ud = (UD06-UD02) /535
右壁,開口上側	: θ ud = (UD04-UD08) /1435
左壁, 壁脚部	: θ ud = (UD05-UD01) /750
右壁,壁脚部	: θ ud = (UD03-UD07) /1435

図-6.4.1-4 3 階建て試験体(試験体記号:3F)

左壁,開口上側	: θ ud = (UD06-UD02) /535
右壁,開口上側	: θ ud = (UD04-UD08) /2235
左壁,壁脚部	: θ ud = (UD05-UD01) /750
右壁,壁脚部	: θ ud = (UD03-UD07) /2235

図-6.4.1-5 3 階建て試験体(試験体記号: 3F 偏心)

試験体:鋼製ダボ1.0, 1.5, 2.0 (左壁について)

図-6.4.2-1 特定変形角時のログ壁脚部回転剛性

試験体:鋼製ダボ1.0, 1.5, 2.0 (右壁について)

図-6.4.2-2 特定変形角時のログ壁脚部回転剛性

試験体:掃き出し, L=1000, L=2000 (左壁について)

図-6.4.3-1 特定変形角時のログ壁脚部回転剛性

試験体:掃き出し, L=1000, L=2000 (すだれ壁について)

図-6.4.3-2 特定変形角時のログ壁脚部回転剛性

試験体:掃き出し,L=1000,L=2000(右壁について)

図-6.4.3−3 特定変形角時のログ壁脚部回転剛性

試験体記号:鋼製ダボ1.0

加振波形:JMA神戸海洋波(NS成分)50%及び100%-1回目

図-6.4.4-1 ログ材間の相対上下方向変位から求めた回転角

試験体記号:鋼製ダボ1.5

加振波形:JMA神戸海洋波(NS成分)50%及び100%-1回目

図-6.4.4-2 ログ材間の相対上下方向変位から求めた回転角

試験体記号:鋼製ダボ2.0

加振波形:JMA神戸海洋波(NS成分)50%及び100%-1回目

図-6.4.4-3 ログ材間の相対上下方向変位から求めた回転角

試験体記号:掃き出し開口

加振波形:JMA神戸海洋波(NS成分)50%及び100%-1回目

図-6.4.5-1 ログ材間の相対上下方向変位から求めた回転角

試験体記号:L=1000

加振波形:JMA神戸海洋波(NS成分)50%及び100%-1回目

図-6.4.5-2 ログ材間の相対上下方向変位から求めた回転角

試験体記号:L=2000

加振波形:JMA神戸海洋波(NS成分)50%及び100%-1回目

図-6.4.5-3 ログ材間の相対上下方向変位から求めた回転角

試験体記号:3F

加振波形:JMA神戸海洋波(NS成分)50%及び100%-1回目

図-6.4.6-1 ログ材間の相対上下方向変位から求めた回転角

図-6.4.6-2 ログ材間の相対上下方向変位から求めた回転角

6.5 本章まとめ

4章の結果(鋼製ダボ単体の一面せん断試験から得られるせん断剛性)を受け,実際の建 物におけるせん断剛性を調べるため,要素壁一次元振動台試験を対象に動的時の剛性を調 べた。その際,各種の設計指針などを参考にした特定変形角(合計 11 点)に着目し,その時 の層せん断力,等価剛性,等価振動数(等価周期)に対する基礎的データを提示した。本章 の資料は,今後の分析課題に対しても有用なデータになると考える。それらの結果から, 以下のことが言える。

- 丸太組技術基準で与えられている現行の設計変形角は、ある種ばらつきを考慮すれば 妥当と考えられる部分も有するが、より詳細な検証が必要と考える。特に、丸太組基 準では摩擦力が考慮されていないので、少なくともこれを考慮しても良い傾向が本結 果から伺える。
- ② JMA 神戸海洋波 50%及び 100%-1回目では、加振中の固有振動数に明確な傾向が得られなかった。
- ③ 上記②と同様にして、BCJ 波レベルI 33%加振も求めた。その結果、ランダム波加振 から得られた固有振動数は、加振中の卓越振動数と概ね一致していた。更に、層せん 断カー層間変形角(層間変位)曲線から得られる等価剛性をもとに算出した等価振動数 とも一致していた。
- ④ 上記③の検証を、三次元振動台試験による実大試験体についても調べた。その結果、
 上記と同様なことが言えた。
- ⑤ 上記①~④を総じて、ログハウスに関する中地震(C0=0.2)時に対する基礎的データに 関する有用な分析結果の取得ができた。

7. 動摩擦試験

7.1 試験概要

2 段のログ材を水平に積み重ね錘を載荷させた要素試験体について,動摩擦試験を行った。**写真-7**.1は代表的な試験体である。

図-7.1.1及び図-7.1.2に、試験体概要を示す。試験体は、1本のログ材を水平に2段 積み重ねて構成したもので、ログ材間に鋼製ダボを設けないものとした。なお、本試験で 使用した1本のログ材は、幅110mm、高さ180mm、すぎ材(E50)を使用している。試験体 の変動要因は、①試験体長さ(1000mm、2000mm、3000mmの3種類)及び②載荷する錘(小、 中、大の3種類)となっている。ここで錘小は、実大2階建て試験体における1階部分の最 小軸力又は仮想3階建てモデルにおける3階部分の最小軸力を想定している。錘大は、仮 想3階建てモデルの1階部分の最大軸力を想定している。錘中は、その中間値である。こ れら錘算出根拠は、巻末の付録に添付している。表-7.1.1は試験体一覧である。

試験は,SWEEP 波,三角波,正弦波を基本としており,その詳細は表-7.1.2 に示す加振 プログラムに従って行っている。

写真-7.1 試験体概要 (L=2000, 載荷錘:小)

図-7.1.1 試験体概要 (単位 mm)

図-7.1.2 試験体概要 (単位 mm)

試験体	載荷錘		ログ材	長さ	高さ	
記号	記号	重量 Wi [kN]	的 [mm]	[mm]	[mm]	鋓製夕ボ
	小	3. 528				
L=1000	中	14.994		1000		
	大	29.988				
	小	3. 528	幅 110			
L=2000	中	14.994	×	2000	360 (9. F几)	なし
	大	29.988	高さ180			
	小	3. 528				
L=3000	中	14.994		3000		
	大	29.988				

表-7.1.1 試験体一覧

(注)表中の錘小は3500[N/m], 錘中は15000[N/m], 錘大は30000[N/m]となっており,

それぞれ錘が16枚,68枚,136枚設置されている。

表中の重量は, 錘1枚当たり(400mm×800mm×9mm)の重量を220.5[N/枚]として 計算した値である。

番号	錘	加振波形	内容	
1	-	SWEEP 波	変位振幅:1.0cm 振動数:1Hz→6Hz	
2		SWEEP 波	変位振幅:0.6cm 振動数:5Hz→2Hz	
3		三角波	振動数:1Hz 加速度:100Gal~400Gal 増幅	
4		正弦波	振動数:2Hz 加速度:100Ga1~400Ga1 増幅	
5	中	SWEEP 波	変位振幅:0.6cm 振動数:2Hz→5Hz	
6		SWEEP 波	変位振幅:0.6cm 振動数:5Hz→2Hz	
7		正弦波	振動数:1Hz 加速度:100Gal~400Gal 増幅	
8	大	SWEEP 波	変位振幅:0.6cm 振動数:2Hz→5Hz	
9		SWEEP 波	変位振幅:0.6cm 振動数:5Hz→2Hz	
10				正弦波

表 – 7.1.2 加振プログラム

なお、本試験では、表-7.1.3 に示す項目を測定した。その際、振動台加速度は、全試 験体で共通測定とした。試験体の応答加速度は、錘架台、錘最頂部、錘側面とした。各ず れは、上段及び下段ログ材の相対水平方向変位である。上下方向変位は、上段及び下段ロ グ材の相対上下方向変位である。なお、いずれも計測サンプリング周期を1000Hz とした。 図-7.1.3~図-7.1.5 に、測定位置を示す。

試験体記号	測定項目	測定点数
_	振動台加速度	3
	応答加速度	5
L=1000	各ずれ(SDP-200)	4
	上下方向変位(CDP-50)	4
	応答加速度(2G及び 5G)	5
L=2000	各ずれ(SDP-200)	4
	上下方向変位(CDP-50)	4
	応答加速度(2G及び 5G)	5
L=3000	各ずれ(SDP-200)	4
	上下方向変位(CDP-50)	4
	42	

表-7.1.3 測定項目

(注) ログ材の水平滑り変位は、状況に応じSDP-200又はDP-1000による測定を行う。

図-7.1.3 測定位置(動摩擦試験) 試験体:L=1000

(注) ログ材の水平滑り変位は、状況に応じSDP-200又はDP-1000による測定を行う。

図-7.1.4 測定位置(動摩擦試験) 試験体:L=2000

(注) ログ材の水平滑り変位は、状況に応じSDP-200又はDP-1000による測定を行う。

図-7.1.5 測定位置(動摩擦試験) 試験体:L=3000

7.2 試験結果

図-7.2.1~図-7.31.2 に、摩擦係数と滑り変位の時刻歴波形及び摩擦係数-滑り変位 関係を示す。なお、摩擦係数と滑り変位の時刻歴波形は、30sec ごとに区切って色分けし ている。摩擦係数と滑り変位関係の曲線の色は、摩擦係数と滑り変位の時刻歴波形で色分 けした時刻に対応している。ここで、摩擦係数は、試験体に載荷した錘の重量を質量換算 (表-7.1.1 中の Wi/980)し、これに錘架台の応答加速度加速度を乗じたものをせん断力 (Qs)とし、せん断力を錘の重量で除した値(Qx/Wi)である。

なお、本報告では結果図のみを示し、より詳細な検証は今後も進めていく予定である。

図-7.2.1 摩擦係数と滑り変位の時刻歴波形

試験体 : L=1000 載荷錘 : 小 加振波形: SWEEP波(1Hz→6Hz), 変位振幅10mm一定

図-7.2-2 摩擦係数-滑り変位関係

試験体	:	L=2000	
載荷錘	:	小	
加振波形	:	SWEEP波(1Hz→6Hz),	変位振幅10mm一定

図-7.3.1 摩擦係数と滑り変位の時刻歴波形

試験体 : L=2000 載荷錘 : 小 加振波形: SWEEP波(1Hz→6Hz), 変位振幅10mm一定

図-7.3.2 摩擦係数-滑り変位関係

試験体	:	L=3000	
載荷錘	:	小	
加振波形	:	SWEEP波(1Hz→6Hz),	変位振幅10mm一定

図-7.4.1 摩擦係数と滑り変位の時刻歴波形

試験体 :L=3000 載荷錘 :小 加振波形:SWEEP波(1Hz→6Hz), 変位振幅10mm一定

図-7.4.2 摩擦係数-滑り変位関係

試験体	:	L=1000	
載荷錘	:	小	
加振波形	:	SWEEP波(5Hz→2Hz),	変位振幅6mm一定

図-7.5.1 摩擦係数と滑り変位の時刻歴波形

試験体 :L=1000 載荷錘 :小 加振波形:SWEEP波(5Hz→1Hz), 変位振幅6mm一定

図-7.5.2 摩擦係数-滑り変位関係

試験体	:	L=2000	
載荷錘	:	小	
加振波形	:	SWEEP波(5Hz→2Hz),	変位振幅6mm一定

図-7.6.1 摩擦係数と滑り変位の時刻歴波形

試験体 :L=2000 載荷錘 :小 加振波形:SWEEP波(5Hz→1Hz), 変位振幅6mm一定

図-7.6.2 摩擦係数-滑り変位関係

図-7.7.1 摩擦係数と滑り変位の時刻歴波形
試験体 :L=3000 載荷錘 :小 加振波形:SWEEP波(5Hz→1Hz), 変位振幅6mm一定

図-7.7.2 摩擦係数-滑り変位関係

試験体 : L=1000 載荷錘 : 小 加振波形: TRIANGLE波, 振動数1Hz一定, 加速度増幅

図-7.8.1 摩擦係数と滑り変位の時刻歴波形

試験体 : L=1000 載荷錘 : 小 加振波形: TRIANGLE波, 振動数1Hz一定, 加速度増幅

図-7.8.2 摩擦係数-滑り変位関係

図-7.9.1 摩擦係数と滑り変位の時刻歴波形

試験体 : L=2000 載荷錘 : 小 加振波形: TRIANGLE波, 振動数1Hz一定, 加速度増幅

図-7.9.2 摩擦係数-滑り変位関係

試験体 : L=3000 載荷錘 : 小 加振波形: TRIANGLE波, 振動数1Hz一定, 加速度増幅

図-7.10.1 摩擦係数と滑り変位の時刻歴波形

試験体 : L=3000 載荷錘 : 小 加振波形: TRIANGLE波, 振動数1Hz一定, 加速度増幅

図-7.10.2 摩擦係数-滑り変位関係

図-7.11.1 摩擦係数と滑り変位の時刻歴波形

試験体	:	L=1000		
載荷錘	:	小		
加振波形	:	SIN波,	振動数2Hz一定,	加速度増幅

図-7.11.2 摩擦係数-滑り変位関係

図-7.12.1 摩擦係数と滑り変位の時刻歴波形

試験体	: L=2000

載荷錘 :小

加振波形:SIN波, 振動数2Hz一定, 加速度增幅

試験体	:	L=3000		
載荷錘	:	小		
加振波形	:	SIN波,	振動数2Hz一定,	加速度増幅

図-7.13.1 摩擦係数と滑り変位の時刻歴波形

試驗休	I = 3000
記 尚史 14	L-3000

載荷錘 :小

加振波形:SIN波, 振動数2Hz一定, 加速度增幅

図-7.13.2 摩擦係数-滑り変位関係

試験体 : L=1000 載荷錘 : 中 加振波形: SWEEP波(2Hz→5Hz), 変位振幅6mm一定

図-7.14.1 摩擦係数と滑り変位の時刻歴波形

試験体 :L=1000 載荷錘 :中 加振波形:SWEEP波(2Hz→5Hz), 変位振幅6mm一定

図-7.14.2 摩擦係数-滑り変位関係

試験体 :L=2000 載荷錘 :中 加振波形:SWEEP波(2Hz→5Hz), 変位振幅6mm一定

図-7.15.1 摩擦係数と滑り変位の時刻歴波形

試験体 : L=2000 載荷錘 : 中 加振波形: SWEEP波(2Hz→5Hz), 変位振幅6mm一定

図-7.15.2 摩擦係数-滑り変位関係

試験体	:	L=3000	
載荷錘	:	中	
加振波形	:	SWEEP波(2Hz→5Hz),	変位振幅6mm一定

図-7.16.1 摩擦係数と滑り変位の時刻歴波形

試験体 :L=3000 載荷錘 :中 加振波形:SWEEP波(2Hz→5Hz), 変位振幅6mm一定

試験体	:	L=1000	
載荷錘	:	中	
加振波形	:	SWEEP波(5Hz→2Hz),	変位振幅6mm一定

図-7.17.1 摩擦係数と滑り変位の時刻歴波形

試験体 :L=1000 載荷錘 :中 加振波形:SWEEP波(5Hz→2Hz), 変位振幅6mm一定

図-7.17.2 摩擦係数-滑り変位関係

試験体	:	L=2000	
載荷錘	:	中	
加振波形	:	SWEEP波(5Hz→2Hz),	変位振幅6mm一定

図-7.18.1 摩擦係数と滑り変位の時刻歴波形

試験体 : L=2000 載荷錘 : 中

加振波形:SWEEP波(5Hz→2Hz), 変位振幅6mm一定

図-7.19.1 摩擦係数と滑り変位の時刻歴波形

試験体 :L=3000 載荷錘 :中 加振波形:SWEEP波(5Hz→2Hz), 変位振幅6mm一定

図-7.20.1 摩擦係数と滑り変位の時刻歴波形

試験体	•	l =1	000
ロハ河スドヤ		L – I	000

載荷錘 : 中

加振波形:SIN波, 振動数2Hz一定, 加速度增幅

図-7.20.2 摩擦係数-滑り変位関係

図-7.21.1 摩擦係数と滑り変位の時刻歴波形

試験体 :L=2000 載荷錘 :中

加振波形:SIN波, 振動数2Hz一定, 加速度增幅

試験体	:	L=3000		
載荷錘	:	中		
加振波形	:	SIN波,	振動数2Hz一定,	加速度増幅

図-7.22.1 摩擦係数と滑り変位の時刻歴波形

試験体	:	L=3000
Me Vester 1.1		

載荷錘 : 中

加振波形:SIN波, 振動数2Hz一定, 加速度增幅

試験体 : L=1000 載荷錘 : 大 加振波形: SWEEP波(2Hz→5Hz), 変位振幅6mm一定

図-7.23.1 摩擦係数と滑り変位の時刻歴波形

試験体 :L=1000 載荷錘 :大 加振波形:SWEEP波(2Hz→5Hz), 変位振幅6mm一定

試験体 : L=2000 載荷錘 : 大 加振波形: SWEEP波(2Hz→5Hz), 変位振幅6mm一定

-200^l

図-7.24.1 摩擦係数と滑り変位の時刻歴波形

試験体 :L=2000 載荷錘 :大 加振波形:SWEEP波(2Hz→5Hz), 変位振幅6mm一定

図-7.25.1 摩擦係数と滑り変位の時刻歴波形
試験体 :L=3000 載荷錘 :大 加振波形:SWEEP波(2Hz→5Hz), 変位振幅6mm一定

図-7.25.2 摩擦係数-滑り変位関係

試験体	:	L=1000	
載荷錘	:	大	
加振波形	:	SWEEP波(5Hz→2Hz),	変位振幅6mm一定

図-7.26.1 摩擦係数と滑り変位の時刻歴波形

試験体 :L=1000 載荷錘 :大 加振波形:SWEEP波(5Hz→2Hz), 変位振幅6mm一定

図-7.26.2 摩擦係数-滑り変位関係

図-7.27.1 摩擦係数と滑り変位の時刻歴波形

試験体 : L=2000 載荷錘 : 大 加振波形: SWEEP波(5Hz→2Hz), 変位振幅6mm一定

図-7.27.2 摩擦係数-滑り変位関係

図-7.28.1 摩擦係数と滑り変位の時刻歴波形

試験体 :L=3000 載荷錘 :大 加振波形:SWEEP波(5Hz→2Hz), 変位振幅6mm一定

図-7.28.2 摩擦係数-滑り変位関係

図-7.29.1 摩擦係数と滑り変位の時刻歴波形

試験体	:	L=1000		
載荷錘	:	大		
加振波形	:	SIN波,	振動数2Hz一定,	加速度増幅

図-7.29.2 摩擦係数-滑り変位関係

図-7.30.1 摩擦係数と滑り変位の時刻歴波形

図-7.30.2 摩擦係数-滑り変位関係

図-7.31.1 摩擦係数と滑り変位の時刻歴波形

試験体 : L=3000 載荷錘 : 大 加振波形: SIN波, 振動数2Hz一定, 加速度増幅

図-7.31.2 摩擦係数-滑り変位関係

〔添付資料:試験体図面〕

鋼製ダボ引張及び一面せん断試験

(注)試験体記号は、本報告書中で用いた記号である。

(財)建材試験センター -263-

(財)建材試験センター -264-

〔添付資料:試験体図面〕

三次元振動台試驗:実大試験体

試験体記号: 実大Ver1

(注)試験体記号は、本報告書中で用いた記号である。

_____ = 4

図か

(財)建材試験センター -270-

2階ダボ配置図

1階ダボ配置図

ラグスクリュー Φ13 L=210

50

50

ーログ 110×90

\$

ーログ 110×180

Bft 2007 11 20 E **唐**位 ダボ、アンカーボルト配置詳細図 2 試験体① 実物大振動試験 日本ログハウス協会

^{付國} ① - 20

① **-** 21 何國 Bft 2007 11 20 E 唐 ダボ、アンカーボルト配置詳細図 3 网面名称 試験体① 試験体 実物大振動試験 格名 日本ログハウス協会

ベランダ軸組図

ыв ① - 22

(財)建材試験センター -287-

① **-** 23

付図

① - 24

9

ログ断面図

E

ログ詳細図

試験体①

実物大振動試験

格名

日本ログハウス協会

(財)建材試験センター -290-

① **-** 26

d国 ① - 28

B^{tt} 2007.11.20 ш 推行 窓廻り詳細図 转导圈团 試験体① 互製体 実物大振動試験 杵 日本ログハウス協会

11 - 29

〔添付資料:試験体図面〕

三次元振動台試驗:実大試験体

試験体記号: 実大Ver2

(注)試験体記号は、本報告書中で用いた記号である。

(財)建材試験センター -303-

पंड 2 - 7

2 9 9 図か ||| l 1, 280 00 3' 640 3, 640 006 5' *11*0 006 1, 800 016 8 8 -® 2007 11 20 ⁺ 910 910 — 東①: 110×110 一 東①: 110×110 一 東①:110×110 2, 730 900 2, 730 ccccco - 際根太 45×90 (杉 E70) 980 840 920 -(3) 1階 床伏図 (際根太図) Ш 1, 150 7.280 1, 830 7, 280 単位 ♪ 視太:150×150@910 4, 550 4, 550 戦艦 2,490 1, 810 910 $\overline{}$ 910 1階床伏図 -® 8 8 1, 050 1 1' 020 630 630 099 '1 099 ' L 國面名称 3' 640 3' 640 7, 280 00 008 ŝ 4 ¢ 試験体2) 087.'/ 3' 640 3' 640 試験体 60E 1, 380 006 ' 009 (2, 000 00 - 🕱 ~ ~ 500 660 660 610 1.280 1.140 980 950 500 Π Ţ 860 2.730 2,730 実物大振動試験 , 370 -(92) 1階 床伏図 (土台伏図) Ť İĪ 1, 430 7.280 7, 280 アンカーボルト(X方向 16-16か、Y方向 16-16か) 鉄骨ウェンざからの収まりを確認すること 伝紋ロ位量は認ってと しは土台ショイントを示す 土台アンカーボルト穴については、エ場スミ付け、現場穴あけとする。 アンガーボルト16¢ - J(土台ジョイント位置) 500 660 530 930 500 J 一 根太:150×150@910 4, 550 4, 550 件名 -----® 日本ログハウス協会 土台 (杉 E70);150×150 根太 (杉 E70);150×150@910 束;E105-7300 構造用合板;⑦24 1 01 d₽1 0‡6 'l 1,410 1, 660 066 'l 3' 640 3' 640 4 7, 280 (%) 4 ¢ X方向 向代

イ部拡大図

2階ダボ配置図

1階ダボ配置図

на 2 – 22

E

ダボ、アンカーボルト配置詳細図 1

网面名称

試験体②

実物大振動試験

名

日本ログハウス協会

試験体

唐位

2 – 24 包図 B^{t‡} 2007_11_20 E 唐 ダボ、アンカーボルト配置詳細図 3 树子里园 試験体② 試験体 実物大振動試験 名 日本ログハウス協会

ベランダ軸組図

на 2 – 25

E

ダボ、アンカーボルト配置詳細図4

國面名称

試験体②

実物大振動試験

42

日本ログハウス協会

試験体

単位

Bft 2007 11 20 E 単位 ダボ、アンカーボルト配置詳細図5 國面名称 試験体② 試験体 実物大振動試験 42 日本ログハウス協会

^{付國} ② - 26

階段詳細図(1) 試験体2 実物大振動試験

2 - 29

(財)建材試験センター -327-

संख 20 - 31

一次元振動台試験:窓型タイプ試験体

- 試験体記号:鋼製ダボ1.0
- 試験体記号:鋼製ダボ1.5
- 試験体記号:鋼製ダボ2.0

面内せん断試験

試験体記号:	Friction-H1.0
試験体記号:Non	Friction-H1.0
試験体記号:	Friction-H0.5
試験体記号:Non	Friction-H0.5

10×90

₽

513

ラグスグリ L=300

- ラダスグリューΦ13 L=270

(含菜及書次三)

(含紙必要次号)

011 01 (京変活動が三)

120×120

06

*∋∀ح∿*دلامح L=180 →

110×180

₽ --5=

0×180

€<u>-</u>}∎

091

110×90

2

110×180

2

*E-}

*--

ラグスかリ: L=210

07 0Z

(支系互動化气) 0月1 0月

-013

-בעילג'לידֿי L=300

0か1 (支援党部次亡)

一次元振動台試験:掃き出しタイプ試験体

試験体記号:掃き出し 試験体記号:L=1000 試験体記号:L=2000

ログ: E50 / 110×180 ダボ: SR235 / ゆ13 Co=0.2 / ダボ1.5倍配置 図面NO.

-348-

-350-

(財)建材試験センター -352-

一次元振動台試験:3階建て試験体 試験体記号:3F

ログ: E50 / 130×180 ダボ: SR235 / ¢13

ログ: E50 / 130×180 ダボ: SR235 / ¢13

。 ⑧ ⑧

〔添付資料:試験体図面〕

一次元振動台試験:3階建て試験体 試験体記号:3F偏心

(注)試験体記号は、本報告書中で用いた記号である。

(財)建材試験センター -364-

(財)建材試験センター -365-

(財)建材試験センター-366-

ログ: E50 / 130×180 ダボ: SR235 / φ13

(財)建材試験センター-367-

ログ: E50 / 130×180 ダボ: SR235 / φ13 ※Co=0.2 /ダボ2倍配置

図面No.

イン

日付 2010.9.7

縮尺 1/3

〔添付資料:試験体図面〕

一次元振動台試驗:動摩擦試験体

試験体記号:L=1000

試験体記号:L=2000

試験体記号:L=3000

(注)試験体記号は、本報告書中で用いた記号である。

(財)建材試験センター -373-

※土台アンカー位置(欠き込み大きさ)と下段ログの位置関係チェック

図面No. ④

(財)建材試験センター -376-

図面No. ⑥

2010丸太組構法実験用構造計算書

試験2 動摩擦試験

軸力(大、中、小)の整理

平成22年9月24日

構造計算書目次

1.	載荷荷重配分の算出根拠		••P 1
2.	2010仮想3階建てモデルの地震時軸カー覧ま	長	••P 2
3.	2007実大2階建て試験体 I の地震時軸カ-	−覧ま・・・	••P 13
4.	L1000タイプの転倒検討		••P 17
5.	土台の設計		••P 18

1. 各試験体への載荷荷重配分の算出根拠

1.1. 錘の種類A=小 実大2階建試験体 I の1階最小軸力:3709.7N/m(C部分)

仮想3階建てモデルの3階最小軸力:3393.4N/m(D部分)

したがって、 3500 N/m 錘枚数= 16

1.2. 錘の種類A=中 大と小の中間

したがって、 15000 N/m 錘枚数= 68 枚

۱

枚

1.3. 錘の種類A=大 仮想3階建てモデルの1階最大軸力:28600.9N/m(A部分)

したがって、 30000 N/m 錘枚数= 136 枚

2.2010. 仮想3階建てモデルの地震時軸カー覧表

ł

	(壁軸力は谷階取下段の数値を示す。)											
	A 壁 🛛	実長さ(m):	1.13	B 壁	<u> (実長さ(m)</u>	0.81						
	小計(N)	合計(N)	単位壁軸力(N/m)	小計(N)	合計(N)	単位壁軸力(N/m)						
3階	9036	9036	7996.5	3111	3111	3840.7						
2階	11927	20963	18551.3	3872	6983	8621.0						
1階	11356	32319	28600.9	3880	10863	13411.1						
	C(柱	=)	0	D 壁	実長さ(m):	0.91						
	小計(N)	合計(N)	単位壁軸力(N/m)	小計(N)	合計(N)	単位壁軸力(N/m)						
3階	8925	8925		3088	3088	3393.4						
2階	15830	24755		3297	6385	7016.5						
1階	15830	40585		3297	9682	10639.6						
	E 壁	実長さ(m):	1.193	F 壁実長さ(m): 0.81								
	小計(N)	合計(N)	単位壁軸力(N/m)	小計(N)	合計(N)	単位壁軸力(N/m)						
3階	8334	8334	6985.8	3182	3182	3928.4						
2階	9362	17696	14833.2	3324	6506	8032.1						
1階	8792	26488	22202.8	3387	9893	12213.6						
	G 壁	<u> 実長さ(m)</u> :	1,598	H 壁実長さ(m):		2.513						
	/小言十(N)	合計(N)	単位壁軸力(N/m)	<u>小計(N)</u>	合計(N)	単位壁軸力(N/m)						
3階	7332	7332	4588.2	9543	9543	3797.5						
2階	8288	15620	9774.7	11145	20688	8232.4						
1階	8370	23990	15012.5	11443	32131	12785.9						
	I 壁	実長さ(m):	0.915			0						
	小計(N)	合計(N)	単位壁軸力(N/m)	小計(N)	合計(N)	単位壁軸力(N/m)						
3階	4929	4929	5386.9	0	0							
2階	4826	9755	10661.2	0	0							
1階	4875	14630	15989.1	0	0							

(壁軸力は各階最下段の数値を示す。)

各階全壁長さで地震時軸力を除した場合の単位長さ当たり壁軸力。(但し、柱負担軸力は除く)

	(L1は開口部を含む壁長さ	、L2は開口部は含まない壁長さ)		
3階	$\Sigma L1 = 7.28 \times 4 + 0.91 \times 2 =$	30.94 m	ΣL2=	19.758 m
	Σ Ν=	108784 N	Σ Ν=	108784 N
	ΣN/ΣL1=	3516.0 N/m	ΣN/ΣL2=	5505.8 N/m
2階	$\Sigma L1 = 7.28 \times 4 + 0.91 \times 2 =$	30.94 m	ΣL2=	19.758 m
	Σ Ν=	209192 N	Σ N=	209192 N
	$\Sigma N / \Sigma L1 =$	6761.2 N/m	Σ N/ Σ L2=	10587.7 N/m
1階	$\Sigma L1 = 7.28 \times 4 + 0.91 \times 2 =$	30.94 m	ΣL2=	19.758 m
	Σ Ν=	319992 N	ΣN=	319992 N
	$\Sigma N / \Sigma L1 =$	10342.3 N/m	ΣN/ΣL2=	16195.6 N/m

口心壁血管回

3

ログ壁軸カの算出(地震時軸力)

1 各ログ耐力壁線毎の建物重量

- 1) X 方向
- i) A 通り

項目	単位重量		面積	または長さ	(m², m)		ΣW	(N)
	(N/m^2)	ф		長さ・高さ				
辰坦	520	2.88	Х	2. 44	=	7.0	3648	
崖似	520	0.00	Х	0.00	Ξ	0.0	0	
3 階畫辟	330	0.72	Х	2.44	=	1.8	580	
0 旧安主		0.00	X	0.00	=	0.0	0	
3 階間什切壁		3.79	Х	1.14	=	4.3	1035	
0月间日初至	240	0.00	X	0.00	=	0.0	0	
		0.00	<u>X</u>	0.00	=	0.0	0	
	750	2.44	X	2. 70	=	6.6	4941	
丸太組壁	/50	-0.45	X	1.14	=	-0.5	-385	
Ta na managana ang katalang ka		-0.80	<u> </u>	2.01	=	-1.6	-1207	
サッシ	200	0.45	X	1.14	=	0.5	103	
		0.80	<u> </u>	2.01	=	1.6	322	
	0	0.00	X	0.00	=	0.0	0	
		0.00	<u>X</u>	0.00		0.0[0	
3 階建物重量合計						ΣW3=	9036 N	١
3 陛足安	1030	2. 28	X	2. 44	=	5.6	5718	
3 酒冶主	1000	0.00	X	0.00	=	0.0	0	
3陛ベランダ	1530	0.46	X	2.44	Ξ	1.1	1699	
	1000	0.00	Х	0.00	=	0.0	0	
2階間仕切壁	240	2.70	Х	1.14	=	3. 1	737	
	240	0.00	X	0. 00	= .	0.0	0	
		2.44	Х	2. 70	Ξ	6.6	4941	
丸太組壁	750	-0.45	Х	1.14	=	-0.5	-385	
		-0.80	X	2.01	=	-1.6	-1207	
サッシ	200	0.45	Х	1.14	=	0.5	103	
		0.80	X	2.01	=	1.6	322	
-	0	0.00	X	0.00	=	0.0	0	
		0.00	X	0.00	=	0.0	0	
2階建物	重量合計					ΣW2=	11927	N
2 陛民室	1060	2. 28	X	2.44	=	5.6	5884	
三 二 四 四 三	1000	0.00	Х	0.00	=	0.0	0	
2階ベランダ	1530	0.46	X	2. 44	=	1.1	1699	
	1000	0.00	X	0.00	=	0.0	0	
1 階間仕切壁	240	0.00	Х	0.00	=	0.0	0	
	210	0.00	. X	0.00	=	0.0	0	
	-	2.44	X	2. 70	=	6.6	4941	
丸太組壁	/50	-0.45	Х	1.14	=	-0.5	-385	
		-0.80	<u>X</u>	2.01	=	-1.6	-120/	
ታッシ	200	0.45	X	1.14	=	0, 5	103	
		0.80	<u>X</u>	2.01	=	1.6	322	
	0	0.00	X	0.00	=		U	
		0.00	X	0.00		0.0	0	
1 階建物	重量合計					ΣW1=	11356	N
建物重	量合計					ΣW=	32319	N

1 N/m 1 N/m

N/m

ii) B 通り

.

項目	単位重量		面積	または長さ	(m², m)	Γ	ΣW (N))
	(N/m ²)	巾		長さ・高さ				
屋根	520	1.20	X	0.46	=	0.5	284	
		0.00	<u>X</u>	0.00	=	0.0	<u> </u>	
3 階妻壁	330	0.30	X	0.60	=	0.2	/1	
		0.00	<u> </u>	0.00	=	0.0	0	
3 階間什切壁		0.00	x	0.00	=	0.0	Õ	
0月11日11日	240	0.00	x	0.00	=	0.0	0	
		0.00	x	0.00	=	0.0	0	
	750	1.50	Х	2. 70	=	4.1	3038	
丸太祖堂	750	-0.45	Х	1.14	=	-0. 5	-385	
#u\$	200	0.45	X	1.14	=	0. 5	103	
117	200	0.00	X	0.00	=	0.0	0	
	0	0.00	Х	0.00	=	0.0	0	
		0.00	X	0, 00	=	0.0	0	
3 階建物重量合計						Σ W3=	3111 N	
2 陇昆安	1030	1.20	X	0. 23	=	0.3	281	
3 阻冶主	1030	0.00	X	0.00	=	0.0	0	
3階ベランダ	1530	1.20	Х	0.46	=	0. 5	835	
	1000	0.00	X	0.00	=	0.0	0	
2階間仕切壁	240	0.00	X	0.00	=	0.0	0	
		0.00	<u>X</u>	0.00	Ξ	0.0	0	
丸太組壁	750	1.50	X	2.70	=	4. [3038	
		-0.45	<u> </u>	1.14	=	-0.5	-385	
サッシ	200	0.45	X	1.14	-	0.5	103	
		0.00	<u>X</u>	0.00		0.0	0	
-	0	0.00	×	0.00	-		0	
2階建物	重量合計	0.00		0,00		<u> </u>	3872 N	
-12/2///		1 00	Store Balance Store	0.00		0.01		
2階居室	1060	1.20	X	0.23	=	0.3	289	
		0.00	<u>X</u>	0.00			0 025	
2階ベランダ	1530	0.00	X	0.40			000 0	
1 陛問4-切辟		0.00	X	0.00		0.0	0	
1月111111111111111111111111111111111111	240	0.00	X	0.00	=	0.0	0	
		1 50	X	2.70	=	4.1	3038	
丸太組壁	/50	-0.45	x	1.14	=	-0.5	-385	
<u>ц., у</u>	100	0.45	X	1.14	=	0.5	103	
サツン	200	0.00	х	0.00	=	0.0	0	
	0	0.00	Х	0.00	=	0.0	0	
7	0	0.00	X	0.00	=	0.0	0	
1 階建物	重量合計					ΣW1=	3880 N	
建物重	量合計					ΣW=	10863 N	

3F	$\Sigma L =$	0.810	m, $\Sigma W / \Sigma L =$	3840	N/m
2F	$\Sigma L =$	0.810	m, $\Sigma W / \Sigma L =$	8620	N/m
1F	$\Sigma L =$	0.810	m, $\Sigma W / \Sigma L =$	13411	N/m

iii)C(柱) 通り

		<u>т</u>			<u> </u>	T		(11)
項目	単位重量		面積	または長さ	(m ⁻ , m)		ΣW	(N)
	(N/m ⁻)			<u> 長さ・局さ</u>			1010	
屋根	520	3.64	Х	2.44	=	8.9	4618	
		0.00	X	0.00	=	0.0	0	
3 階妻壁	330	0.72	Х	2.44	=	1.8	580	
		0.00	X	0.00	=	0.0	0	
		1.14	Х	2.16	=	2.5	590	
3階間仕切壁	240	2.44	Х	2.16	=	5.3	1265	
		1.37	Х	2.70	=	3. /	885	
	A. 1	0.00	X	0.00	=	0.0	0	
丸太組壁	750	2.44	Х	2. /0	=	6.6	4941	
		-2.44	X	2.16	=	-5.3	-3953	
	0	0.00	X	0.00	=	0.0	0	
· · · · · · · · · · · · · · · · · · ·		0.00	<u>X</u>	0.00	=	0.0	0	
	0	0.00	X	0.00	=	0.0	U	
		0.00	<u> </u>	0.00	=	0.0	0	
3 階建物	重量合計					Σ W3=	8925 N	
111日	 畄 位		面積	または長さ	(m ² . m)	Т	.\\\ح	(N)
70	(N/m^2)	l п	174	長さ・高さ	,, ,			~~~
	4000	3.64	X	2.44	=	8.9	9414	
3 階居室	1060	0.00	x	0.00	=	0.0	0	
	1500	0.72	X	2. 44	=	1.8	2688	
3階ベランダ	1530	0.00	X	0.00	=	0.0	0	
		1.14	X	2.16	=	2.5	590	
2階間仕切壁	240	2.44	X	2.16	=	5.3	1265	
		1.37	x	2. 70	=	3.7	885	
	750	2.44	X	2.70	=	6.6	4941	
丸 入私壁	/50	-2.44	x	2.16	=	-5.3	-3953	
	٥	0.00	X	0.00	=	0.0	0	
		0.00	X	0.00	=	0.0	0	
	٥	0.00	X	0, 00	=	0.0	0	
		0.00	X	0.00	=	0.0	0	
2 陛建物	重 晶合計					Σ W3=	15830 N	
4阳定10	<u>二年</u> 山印							-
2階居室	1060	3.64	X	2. 44	=	8.9	9414	
		0.00	X	0.00	=	0.0	0	
2 階ベランダ	1530	0.72	Х	2.44	=	1.8	2688	
		0.00	X	0.00	=		0	
	0.40	1.14	x	2.16	=	2.5	590	
1階間仕切壁	240	2.44	X	2.16	=	5.3	1205	
		1.3/	<u> </u>	2.70	=	3.7	885	
丸太組壁	750	2.44	X	2.70	=	0.0	4941	
		-2.44	<u>X</u>	<u>Z. 10</u>	=	-5.3	-3993	
-	0	0.00	X	0.00	=		U	
		0.00	<u> </u>	0.00	=		<u>U</u>	
	0	0.00	X	0.00	=		U A	
		0.00	<u> </u>	0.00		0.0	U	
1 階建物	重量合計					ΣW1=	15830 N	ŀ
建物重	量合計					ΣW=	40585 N	I

iv) D 通り

項目	単位重量		面積または長さ (m ² , m)				ΣW (N)	
	(N/m^2)	ф		長さ・高さ				
屋根	520	0.46	Х	1. 20	=	0.5	284	
庄 ftk		0.00	Х	0.00	=	0.0	0	
2 陛妻壁	400	0.36	Х	0.60	=	0.2	86	
2 佰安主		0.00	X	0.00	=	0.0	0	
2階間仕切辟	240	0. 29	Х	2.16	=	0.6	150	
二百间日 3 王		0.00	X	0.00	=	0.0	0	
丸太組壁	750	1.50	Х	2.70	=	4.1	3038	
		-0.29	X	2.16	=	-0.6		
	0	0.00	Х	0.00	=	0.0	0	
		0.00	X	0.00	=	0.0	0	
	0	0.00	X	0.00	Ξ	0.0	0	
		0.00	X	0,00	=	0.0	0	
2階建物	重量合計					ΣW2=	3088 N	
。唯日由	1000	0.46	Х	1.20	Ξ	0.5	579	
3 陌店至	1000	0.00	X	0.00	=	0.0	0	
の際がニング	1520	0.00	Х	0.00	=	0.0	0	
3階ヘランダ	1530	0.00	X	0.00	=	0.0	0	
0 账目 (上切時	240	0. 29	Х	2.16	=	0.6	150	
2 階間任功壁	240	0.00	X	0.00	=	0.0	0	
十十個時	750	1.50	X	2. 70	Ξ	4.1	3038	
丸太祖壁	750	-0.29	Х	2.16	=	-0.6	-470	
	0	0.00	X	0.00	=	0.0	0	
	U	0.00	X	0.00	=	0.0	0	
	^	0.00	X	0.00	=	0.0	0	
	V	0.00	X	0.00	=	0.0	0	
1 階建物	重量合計					ΣW1=	3297 N	
	1000	0.46	X	1. 20	=	0.5	579	
2 階居室	1060	0.00	X	0.00	=	0.0	0	
	4 5 0 0	0.00	X	0.00	=	0.0	0	
2 階ベランダ	1530	0.00	X	0.00	=	0.0	0	
	0.40	0.29	X	2, 16		0.6	150	
1 階間仕切壁	240	0.00	X	0.00	=	0. 0	0	
ᆂᄺᄨ	750	1.50	X	2.70	=	4.1	3038	
丸太祖壁	/50	-0.29	х	2.16	=	-0.6	-470	
	<u>^</u>	0.00	х	0.00	=	0.0	0	
	0	0.00	Χ	0.00	=	0.0	0	
	0	0,00	х	0, 00	=	0.0	0	
—	0	0.00	х	0.00	=	0.0	0	
1 階建物	重量合計					ΣW1=	3297 N	
建物重	量合計					ΣW=	9682 N	
	$\begin{array}{ccc} 3F & \Sigma L = \\ 2F & \Sigma L = \end{array}$	0.910 n 0.910 n	n, ΣW/2 n, ΣW/2	ΣL= ΣL=	3394 7017	N/m N/m	49,	

2F	$\Sigma L =$	0.910	m, $\Sigma W / \Sigma L =$	7017	N/m
1F	$\Sigma L =$	0.910	m, $\Sigma W / \Sigma L =$	10640	N/m

ø

7

2) Y 方向

i) E 通り

項目	単位重量		面積ま	たは長さ	(m², m)		ΣW (N)
	(N/m ²)	ф		長さ・高さ			
屋根	520	1.97	х	2.44	=	4.8	2493
<u>ж</u> қ		0.00	<u>x</u>	0.00	=	0.0	0
3 階妻壁	330	0.72	X	2.44	=	1.8	580
つ陀門仏切除		0.00	<u> </u>	0.00		2 7	0
3陌间江切堂	240	0.00	X Y	0.00	=	0.0	0
上上加陸	750	2.44	X	2. 70	=	6.6	4941
丸太祖壁	750	-0.90	х	1.14	=	-1.0	-770
#w\$	200	0, 90	Х	1.14	=	1.0	205
117	200	0.00	X	0.00	=	0.0	0
_	0	0.00	х	0.00	=	0.0	0
		0.00	<u> </u>	0.00	=	0.0[0
3 階建物	重量合計					ΣW3=	8334 N
3 陛民室	1030	1.37	Х	2. 44	=	3.3	3431
	1000	0.00	X	0.00	=	0.0	0
3 階ベランダ	1530	0.00	X	0.00	=	0.0	0
0 11比图 (上 47) 日本		0.00	<u> </u>	0.00		0.0	1555
2階间任切壁	240	2.40	x	2.70	_	0.0	1555
	754	2 44	×	2 70	=	6.6	4941
丸太組壁	/50	-0.90	x	1, 14	=	-1.0	-770
#a2.	200	0.90	X ·	1, 14	=	1.0	205
992	200	0.00	х	0.00	=	0.0	0
	0	0.00	X	0.00	=	0.0	0
		0.00	X	0.00	=	0.0	0
2階建物	重量合計					ΣW2=	9362 N
っ陸足安	1060	1.37	X	2.44	=	3.3	3530
2個冶主	1000	0.00	х	0.00	=	. 0.0	0
2 階ベランダ	1530	0.00	X	0.00	=	0.0	0
		0.00	<u>X</u>	0.00	=	0.0	0
「階間任功壁	240	1.3/	X	2.70	=		885
		2 44	X	2 70	=	6.6	4941
丸太組壁	750	-0.90	x	1, 14	=	-1.0	-770
H	200	0.90	х	1.14	Ξ	1.0	205
1999	200	0.00	х	0.00	=	0.0	0
1	0	0.00	х	0, 00	=	0.0	0
	U	0.00	X	0.00	=	0.0	0
1 階建物	重量合計					ΣW1=	8792 N
建物重	量合計					ΣW=	26488 N
	$3F \Sigma L = 2F \Sigma I = 2F$	1.193 n 1.193 n	n,ΣW/ n ΣW/	$\Sigma L = \Sigma L = \Sigma L = \Sigma$	6989 14840	N/m N/m	

ii) F 通り

項目	単位重量	[面積ま	たは長さ	(m², m)		ΣW (N)
	(N/m^2)		ŧ	ミさ・高さ			
屋根	520	0.46	Х	1.20	=	0.5	284
		0.00	X	0,00	=	0.0	<u> </u>
3 階妻壁	330	0.30	X	0.00	-	0.4	0
3階間仕切壁	040	0.00	X	0.00	=	0.0	0
	240	0.00	Х	0.00	=	0.0	0
丸太組壁	750	1.50	Х	2.70	=	4.1	3038
,		-0.45	<u>X</u>	1.14	=	-0.5	-385
サッシ	200	0.45	X X	0.00	-	0.0	0
	<u>^</u>	0.00	X	0.00	=	0.0	0
-	U	0.00	X	0,00	=	0.0	0
3階建物	重量合計					Σ W3=	3182 N
3 陛足安	1030	0.46	X	1.20	=	0.6	569
3 咱店主	1000	0.00	X	0.00	=	0.0	0
3 階ベランダ	1530	0.00	X	0.00	=	0.0	0
っ陸閉社切辟		0.00	X	0.00 1 96		0.0	0
く旧印江切至	240	0.00	X	0.00	=	0.0	õ
力 十 幻 睦	750	1.50	X	2. 70	=	4.1	3038
<u> </u>	700	-0.45	X	1.14	=	-0.5	-385
ታッシ	200	0.45	X	1.14	=	0.5	103
		0.00	X	0.00	=		0
· · · · · · · · · · · · · · · · · · ·	0	0.00	X	0.00	=	0.0	0
2階建物	重量合計					Σ W2=	3324 N
	1060	0.46	X	1. 20	=	0.6	585
2階居至	1060	0.00	X	0.00	=	0. 0	0
2 階ベランダ	1530	0.00	Х	0.00	=	0.0	0
		0.00	<u>X</u>	0.00	=	0.0	U
「陌间仕切壁	240	0.00	X	0.00	- =		0
/ _ / P = = +	750	1.50	X	2.70	=	4. 1	3038
丸太祖壁	/50	-0.45	X	0.94	=	-0.4	-317
#1115	200	0.45	Х	0. 91	=	0.4	82
1 2		0.00	X	0.00	=	0.0	0
<u> </u>	0	0.00	X X	0.00	=	0.0	0
1 階建物	重量合計					Σ W1=	3387 N
建物重	量合計					ΣW=	9893 N
	$\begin{array}{ll} 3F & \Sigma L = \\ 2F & \Sigma L = \\ 1F & \Sigma L = \end{array}$	0. 810 r 0. 810 r 0. 810 r 0. 810 r	n, ΣW/2 n, ΣW/2 n, ΣW/2	$\Sigma L = \Sigma L $	3928 8032 12214	N/m N/m N/m	

iii) G 通り

項目	単位重量	Γ	面積る	または長さ	(m², m)		ΣW (N)	
	(N/m^2)	ф		長さ・高さ				
屋根	520	1.80	X	2.88	=	5.2	2691	
		0.00	<u>X</u>	0.00	=	0.0	0	
3階妻壁	330	0.00	X	0.00	=	0.0	0	
2 陛閉什切辟		0.00	<u> </u>	0.00	=	0.0	0	
3 咱间江奶至	240	0.00	X	0.00	=	0.0	0	
上 上 40 日本	750	2.58	X	2. 70	=	7.0	5214	
丸太祖壁	750	-0.68	X	1. 54	=	-1.0	-783	
#wSz	200	0.68	Х	1. 54	=	1.0	209	
117	200	0.00	X	0.00	=	0.0	0	
-	0	0.00	X	0.00	= .	0.0	0	
		0.00	<u> </u>	0.00		0.01	0	
3 階建物	重量合計					Σ W3=	7332 N	
2 陛民安	1030	1.20	X	2. 28	=	2. 7	2812	
3 陷居主	1030	0.00	X	0.00	=	0.0	0	
3 階ベランダ	1530	0.46	X	1.20	=	0.5	835	
		0.00	<u>X</u>	0.00	=	0.0	0	
2 階間仕切壁	240	0.00	X	0.00	=		0	
		0.00	<u> </u>	2 70		7.0	5211	
丸太組壁	750	2. 58	X	2.70		-1 0	-783	
		0.68	<u> </u>	1.54	=	1.0	209	
サッシ	200	0.00	x	0.00	=	0.0	0	
		0.00	X	0.00	=	0.0	0	
	0	0.00	X	0.00	=	0.0	0	
2 階建物	重量合計					ΣW2=	8288 N	
	4000	1 20	Х	2, 28	=	2.7	2894	
2階居室	1060	0,00	x	0,00	=	0.0	0	
	1520	0.46	Х	1. 20	=	0.5	835	
2階へランダ	1000	0.00	X	0.00	=	0.0	0	
1 階間仕切壁	240	0.00	X	0.00	=	0.0	0	
		0.00	<u>X</u>	0.00	=	0.0	0	
丸太組壁	750	2.58	X	2.70	=	7.0	5214 783	
		-0.68	<u>X</u>	1. 04		-1.0	209	
サッシ	200	0.00	× v	0.00	=	0.0	200	
		0.00	<u> </u>	0.00	=	0.0	0	
	0	0.00	X	0.00	=	0.0	0	
1 階建物)重量合計					ΣW1=	8370 N	
建物重	量合計					ΣW=	23989 N	
	$\begin{array}{ll} 3F & \Sigma L = \\ 2F & \Sigma L = \end{array}$	1.598 m 1.598 m	1, ΣW/ 1, ΣW/	ΣL= ΣL=	4589 9777	N/m N/m		

1F $\Sigma L = 1.598$ m, $\Sigma W / \Sigma L = 15017$ N/m

iv) H 通り

項目	単位重量	1	面積る	または長さ	(m², m)	Τ	ΣΨ ((N)
	(N/m^2)	<u></u> ф		長さ・高さ				
层坦	520	1.60	X	3.64	=	5.8	3028	
/ 注 作民	520	0.00	X	0.00	=	0.0	0	
3. 階畫辟	330	0.00	X	0.00	=	0.0	0	
		0.00	X	0.00	=	0.0	0	
3階間仕切壁	240	0.00	X	0.00	=	0.0	0	
		0.00	X	0.00	=	0.0	0	
	750	3.64	X	2.70	=	9.8	13/1	
丸太祖壁	/50	-0.45	X	1.14	=	-0.5	-380 _700	
		-0,68	<u>X</u>	1.54	=	-1.U	103	
サッシ	200	0.45	X	1.14	_	0.0	200	
		0.08	<u>×</u>	0.00			09	
	0	0.00	X	0.00	=	0.0	0	
		0.00	<u>,</u>	0.00		<u> </u>	0540 8	
3 階建物:					∑ W3=	9543 N		
項目	単位重量	面積または長さ (m ² , m)					ΣW	(N)
	(N/m ²)	巾		長さ・高さ				
3. 陛足室	1060	1.20	X	3. 64	=	4.4	4630	
王氏町で	1000	0.00	Х	0.00	=	0.0	0	
3階ベランダ	1530	0.00	Х	0.00	=	0.0	0	
	1000	0.00	X	0.00	=	0.0	0	
2階間什切壁	240	0.00	X	0.00	=	0.0	0	
		0.00	X	0.00	=	0.0	0	
丸太組壁	750	3.64	X	2.70	=	9.8	/3/1	
	/50	-0.45	X	1.14	=	-0.5	-385 702	
		-0.68	X	1.54			-103	
サッシ	200	0.40	X	1.14	_	1 0	200	
		0.00	× v	0.00	=	0.0	0	
-	0	0.00	A Y	0.00	=	0.0	Ő	
0 陇建伽香旱合斗		0.00	and the Automation			Z W0-	111/6 N	
2階建物					Z WZ=	11140 N		
2 陛民室	1060	1.20	Х	3.64	=	4.4	4630	
- 生内内王	1000	0.00	X	0.00	=	0.0	0	
2階ベランダ	1530	0.00	X	0.00	=	0.0	0	
		0.00	X	0.00	=	0.0	<u> </u>	
1階間仕切壁	240	0.00	Х	0.00	=	0.0	0	
		0.00	<u> </u>	0,00	=	0.0	U 7271	
力士幻座	750	3.04	X	2.70	-	9.0 _0 F	10/1 _205	
丸へ祖堂	, 100	-0.40	X	0.74	_	-0.5	-376	
		0.00	λ ν	1 14	=	0.5	103	
サッシ	200	0.45	A Y	0.74	=	0.5	100	
		0.00	<u> </u>	0.00	=	0.0	0	
relation of a complete second s	0	0.00	x X	0.00	=	0.0	Ō	
1 階建物					ΣW1=	11443 N		
建物重	量合計					ΣW=	32132 N	

3F	$\Sigma L = \Sigma L $	2. 513	m, $\Sigma W / \Sigma L =$	3798	N/m				
2F		2. 513	m, $\Sigma W / \Sigma L =$	8234	N/m				
1F		2. 513	m, $\Sigma W / \Sigma L =$	12789	N/m				
			A			6			Construction
------	--------	---------	---------	--------	----------	--------	--------	----------	--------------
		G	0.91		Н	2.07		I	JI 0.91 \\
	小計	合計	単位軸力	小計	合計	単位軸力	小計	合計	単位軸力
2階	4011.0	4611.0	5067.0	6061.0	6061.0	2928.0	3096.0	3096.0	3402.2
1階上部	4649.0	9260.0	10175.8	5806.0	111867.0	5732.9	1664.0	1 4760.0	5230.8
15段	382.5	9642.5	10596.2	317.0	12184.0	5886.0	189.0	4949.0	5438.5
14段	382.5	10025.0	11016.5	317.0	12501.0	6039.1	189.0	5138.0	5646.2
13段	382.5	10407.5	11436.8	317.0	12818.0	6192.3	189.0	5327.0	5853.8
12段	382.5	10790.0	11857.1	317.0	13135.0	6345.4	189.0	5516.0	6061.5
11段	141.5	10931.5	12012.6	242.2	13377.2	6462.4	141.5	5657.5	6217.0
10段	141.5	11073.0	12168.1	242.2	13619.4	6579.4	141.5	5799.0	6372.5
9段	141.5	11214.5	12323.6	242.2	13861.6	6696.4	141.5	5940.5	6528.0
8段	141.5	11356.0	12479.1	242.2	14103.8	6813.4	141.5	6082.0	6683.5
7段	141.5	11497.5	12634.6	242.2	14346.0	6930.4	141.5	6223.5	6839.0
6段	141.5	11639.0	12790.1	242.2	14588.2	7047.4	141.5	6365.0	6994.5
5段	141.5	11780.5	12945.6	242.2	14830.4	7164.4	141.5	6506.5	7150.0
4段	141.5	11922.0	13101.1	242.2	15072.6	7281.4	141.5	6648.0	7305.5
3段	141.5	12063.5	13256.6	242.2	15314.8	7398.5	141.5	6789.5	7461.0
2段	141.5	12205.0	13412.1	242.2	15557.0	7515.5	141.5	6931.0	7616.5
169	141.5	12346.5	13567.6	242.2	15799.2	7632.5	141.5	7072.5	7772.0

r ,

	L		0.91 K		2.67 II L		0.91		
	小計		単位軸力	小計	合計	単位軸方	小計	合計	"単位軸力"
2階	3930.0	39 <u>3</u> 0.0	4318.7	6771.0	6771.0	2536.0	3096.0	3096.0	3402.2
1階上部	2747.0	6677.0	7337.4	8580.0	15351.0	5749.4	2546.0	5642.0	6200.0
15段	135.3	6812.3	7486.0	450.0	15801.0	5918.0	132.8	5774.8	6345.9
14段	135.3	6947.5	7634.6	450.0	16251.0	6086.5	132.8	5907.5	6491.8
13段	135.3	7082.8	7783.2	450.0	16701.0	6255.1	132.8	6040.3	6637.6
12段	135,3	7218.0	7931.9	450.0	17151.0	6423.6	132.8	6173.0	6783.5
11段	246.9	7464.9	8203.2	312.4	17463.4	6540.6	141.5	6314.5	6939.0
10段	246.9	7711.8	8474.5	312.4	17775.8	6657.6	141.5	6456.0	7094.5
9段	246.9	7958.7	8745.8	312.4	18088.2	6774.6	141.5	6597.5	7250.0
8段	246.9	8205.6	9017.1	312.4	18400.6	6891.6	141.5	6739,0	7405.5
7段	246.9	8452.5	9288.5	312.4	18713.0	7008.6	141.5	6880.5	7561.0
6段	246.9	8699.4	9559.8	312.4	19025.4	7125.6	141.5	7022.0	7716.5
5段	246.9	8946.3	9831.1	312.4	19337.8	7242.6	141.5	7163.5	7872.0
4段	246.9	9193.2	10102.4	312.4	19650.2	7359.0	141.5	7305.0	8027.5
3段	246.9	9440.1	10373.7	312.4	19962.6	7476.6	141.5	7446.5	8183.0
2段	246.9	9687.0	10645.1	312.4	20275.0	7593.6	141.5	7588.0	8338.5
1段	246.9	9933.9	10916.4	312.4	20587.4	7710.6	141.5	7729,5	8494.0

.

15

≤≤≤≤≤1 - 際根太 45×90(杉 E70)

① 転倒時の摩擦係数 M

M= 500 / 897=0.557

② 長期めり込みの検討

$$W/A = 29988/2 \times 100 \times (1.7+2.0+1.7) = 29988 / 1080 = 27.8N/m2 < 220N/m2o.k$$

③ すべり時転倒モーメント考慮しためり込みの検討

$$W'/A' = (29988 \times 2)/2 \times 50 \times (1.7+2.0+1.7)$$

= 59976 / 540
= 111N/cm² <400N/cm² ...o.k

(4) ラグスクリュー(13¢)のせん断耐力の検討

せん断耐力:6554N/本

配置しているラグススクリュー:6-13 φ

許容せん断耐力:6x6554=39264N> 29988N (39264/29988=1.309G)

⑤ すべり時転倒モーメント考慮したラグスクリューの引き抜きの検討

引っ張り耐力:9248N/本

配置しているラグススクリュー:6-13 φ

許容引っ張り耐力考慮: 2x9248x(0.70+0.35)+29988x0.35=29706.6N m> 29988x0.897=26899Nm

17

5. 土台の設計

ログ梁(大)					
(片持ち) 短期 一般地域	¤ h =	支床慎当重 50 cm	平1立里里 γ= 20 N/cn	n/m²	
木材の種類: ヤング係数: E= 曲げ許容応力度: fb= せん断許容応力度: fs=	すぎ ログ 500 x1.0E+3N/ 2400 N/c㎡ 180 N/c㎡	cm			
→use: 118.0 x 180.0					
荷重条件 錘D.L. 260 屋根 <u>積載荷重 1600</u> 1860 N/㎡	1(勾配: なし) 建梁用D.L. 積雪荷重 1000 1000	2 (勾酉 屋根梁用D <u>積雪</u> 花 N/㎡	己: なし) .L. <u>0</u> <u>売重 1000</u> 1000 N/m	Î	
等分布 錘; 221 その他; 0	x 34.000 x 0.000	/ 0	. 70 = 10 =	710.0 N/m 0.0 N/m	
単位荷重 集中 壁軸力; 0 壁軸力; 0 ダボ 0 ダボ 0	x 1.00 x 1.00 x 1.00 x 1.00 x 1.00	面積 x 0 x 0 x 0 x 0 x 0	00 = 00 = 00 = 00 =	0. 0 N 0. 0 N 0. 0 N 0. 0 N	
等分布 集中 軸力; → 0.0 転力; → 0.0 ダボ → 0.0	a L - 0.50 0.00 0.50 0.00 0.50 0.00 0.50 0.00 0.50	CA CB 1338.8 0.0 0.0 0.0	Mo 0.0 0.0 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	QA QB 355.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
タホ <u>↓</u> 0.0 (任意点:a) A A スパン B L= 0.50 m	からの距離 0.00	1338.8 N∙m ″	0.0 0.0 5 0.0 0.0 5	0.0 <u>0</u> 3355.0 <u>0</u> .0 N <i>"</i>	
〈断面性能〉					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	cm A = 212.4 cm ³ , ix= 5.20	cm², le= 1 cm, Zxe= 1	. 00 I = . 00 Zx =	5735 cm⁴ 637.2 cm³	
<pre> <許容曲げ応力度〉 Cl= 1.00 (等分布荷重) L/h= 2.78 →Ch= 1.06 Cf=Cl·Ch·(30/h)^(1/9)= 1.12 →Cf= 1.00 Cf・fb= 2400.0 N/cm² </pre>		o = e= α · o= Cs= $\sqrt{(e \cdot h/b^2)}$ Ck= $\sqrt{(0.6Ey/fbx)}$ →Cb= Cb · fb=	$0 \text{ cm}, \alpha = 0.0 \text{ cm}$ = 0.0 $\alpha = 0.0$ $\alpha = 11.2$ = 1.00 = 2400.0 N/cr	1.9(等分布荷重) 	
<u>→fb'= 2400.0 N/cm</u>					
〈設計用応力〉 MD= 1338.8 N·m, QD= 5355.0	N				
〈曲げ応力度〉 MD/Zxe= 210.1 <	sfb' = 1.00	fb' = 240	00.0 N/cm²,0K		
〈せん断応力度〉 1.5QD/Ae= 37.8 <	sfs=fs=	18	0.0 N/cm²,0K		
〈中央部最大たわみ〉 $\delta 1= 1/8 \cdot w1 \cdot L^4 / (E \cdot e) =$ $\delta 2= 1/6 \cdot w2 \cdot (3 \cdot a^2 \cdot L - a^3) / (E \cdot e) =$ $\delta 2= 1/6 \cdot w2 \cdot (3 \cdot a^2 \cdot L - a^3) / (E \cdot e) =$ $\delta 2= 1/6 \cdot w2 \cdot (3 \cdot a^2 \cdot L - a^3) / (E \cdot e) =$ $\delta 2= 1/6 \cdot w2 \cdot (3 \cdot a^2 \cdot L - a^3) / (E \cdot e) =$.0. 0. 0. 0. 0.	029 000 000 000 000		
δ/L= 1 / 1713 <	1 / 225	oʻ = 0. , OK	029 <	1.5 cm , UK	

ログ梁(中)

ロク梁(甲)	是 涩藉雲暑
(片持ち) 短期 一般地域	$h = 50 \text{ cm} \gamma = 20 \text{ N/cm/m}^2$
木材の種類: すぎ ログ ヤング係数: E= 500 x1.0E 曲げ許容応力度: fb= 2400 N/c㎡ せん断許容応力度: fs= 180 N/c㎡	+3N/cm [*]
→use: 118.0 x 180.0	
荷重条件 1(勾配:なし 錘D.L. 260 屋根梁用D.L. 積載荷重 1600 積雪荷重 1 1860 N/m ぱ	ン 2 (勾配: なし) 2 (勾配: なし) 2 (勾配: なし) 0 屋根梁用D.L. 1000 1000 N/m 1000 N/m エ
等分布 錘: 221 x 222 その他: 0 x 0	500 / 0.70 = 7087.5 N/m 000 = 0.0 N/m
単位荷重 集中 壁軸力: 0 x 壁軸力: 0 x ダボ 0 x ダボ 0 x	面積 00 x 0.00 = 0.0 N 00 x 0.00 = 0.0 N 00 x 0.00 = 0.0 N 00 x 0.00 = 0.0 N
W a L 等分布 7087.5 - () 集中 軸力: 0.0 0.00 () 軸力: 1 0.0 0.00 () ダボ 1 0.0 0.00 () ダボ 1 0.0 0.00 ()	CA CB Mo QA QB 0.50 885.9 0.0 0.0 3543.8 0.0 0.50 0.0 0.0 0.0 0.0 0.0 0.50 0.0 0.0 0.0 0.0 0.0 0.50 0.0 0.0 0.0 0.0 0.0 0.50 0.0 0.0 0.0 0.0 0.0 0.50 0.0 0.0 0.0 0.0 0.0
(任意点:a) Aからの距離 A スパン B L= 0.50 m	885.9 0.0 0.0 3543.8 0.0 N·m ″ ″ N ″
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.4 cm², le= 1.00 l = 5735 cm ⁴ 5.20 cm, Zxe= 1.00 Zx = 637.2 cm ³
<許容曲げ応力度> Cl= 1.00(等分布荷重) L/h= 2.78 →Ch= 1.06 Cf=Cl·Ch·(30/h)^(1/9)= 1.12 →Cf= 1.00 Cf·fb= 2400.0 N/cm ²	o = 0 cm, α = 1.9 (等分布荷重) e= α · o= 0.0 cm Cs= $\sqrt{(e\cdoth/b^2)}$ = 0.0 Ck= $\sqrt{(0.6Ey/fbx)}$ = 11.2 →Cb= 1.00 Cb·fb= 2400.0 N/cm ²
_→fb'=2400.0 N/cm [*] 〈設計用応力〉	
MD= 885.9 N·m, QD= 3543.8 N	
〈曲げ応力度〉 MD/Zxe= 139.0 < sfb'= 1.	00 fb'= 2400.0 N/cm [*] ,0K
〈せん断応力度〉 1.5QD/Ae= 25.0 < sfs=fs=	180.0 N/cm², 0K
〈中央部最大たわみ〉 $\delta 1 = 1/8 \cdot w1 \cdot L^4 / (E \cdot e) =$ $\delta 2 = 1/6 \cdot w2 \cdot (3 \cdot a^2 \cdot L - a^3) / (E \cdot e) =$ $\delta 2 = 1/6 \cdot w2 \cdot (3 \cdot a^2 \cdot L - a^3) / (E \cdot e) =$ $\delta 2 = 1/6 \cdot w2 \cdot (3 \cdot a^2 \cdot L - a^3) / (E \cdot e) =$ $\delta 2 = 1/6 \cdot w2 \cdot (3 \cdot a^2 \cdot L - a^3) / (E \cdot e) =$	0. 019 0. 000 0. 000 0. 000 0. 000 0. 000
δ/L= 1 / 2589 < 1 / 225	δ = 0.019 < 1.5 cm ,OK ,OK